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The N400 ERP component is widely used in research on language and semantic memory.
Although the component’s relation to semantic processing is well-established, the compu-
tational mechanisms underlying N400 generation are currently unclear (Kutas &
Federmeier, 2011). We explored the mechanisms underlying the N400 by examining
how a connectionist model’s performance measures covary with N400 amplitudes. We
simulated seven N400 effects obtained in human empirical research. Network error was
consistently in the same direction as N400 amplitudes, namely larger for low frequency
words, larger for words with many features, larger for words with many orthographic
neighbors, and smaller for semantically related target words as well as repeated words.
Furthermore, the repetition-induced decrease was stronger for low frequency words, and
for words with many semantic features. In contrast, semantic activation corresponded less
well with the N400. Our results suggest an interesting relation between N400 amplitudes
and semantic network error. In psychological terms, error values in connectionist models
have been conceptualized as implicit prediction error, and we interpret our results as sup-
port for the idea that N400 amplitudes reflect implicit prediction error in semantic memory
(McClelland, 1994).

� 2014 Elsevier B.V. All rights reserved.
1. Introduction tions in performance measures of an attractor network
The N400 component of the event-related brain poten-
tial (ERP) is used widely in neuro-cognitive research on
language and semantic memory. Although the compo-
nent’s relation to semantic processing is well-established,
the specific computational mechanisms underlying N400
generation are currently not clear (Kutas & Federmeier,
2011). The goal of the present research is to elucidate this
issue by relating N400 amplitude modulations to varia-
model of word meaning.
In the remainder of the Introduction, we first present a

short review of empirical N400 data. We then discuss the-
ories of the cognitive sources of the N400, as well as Laszlo
and Plaut’s (2012) connectionist simulations of the N400.
Next, we outline our approach to modeling the N400,
which differs in key ways from that of Laszlo and Plaut.
In this discussion, we define ‘‘implicit prediction error’’ as
it is used in the present article and simulations.

1.1. N400 data

The N400 is a negative-going ERP component with a
broad centro-parietal scalp distribution peaking at about
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400 ms after stimulus presentation, and is linked to the
processing of meaning (see Kutas & Federmeier, 2011, for
comprehensive review). It was initially reported by Kutas
and Hillyard (1980), who showed that N400 amplitudes
were modulated by a word’s fit in a sentence context, with
much larger amplitudes for contextually anomalous than
for predictable words. For example, the N400 is larger
when ‘‘I take my coffee with cream and . . .’’ is completed
by ‘‘socks’’ as compared to ‘‘sugar’’. Subsequent work
showed that N400 amplitudes gradually decrease with
increasing expectancy of a given word in a given context
(Kutas & Hillyard, 1984). However, a sentence context is
not needed to elicit N400 modulations. For example,
N400 amplitudes vary as a function of semantic related-
ness between word pairs, with smaller amplitudes to a tar-
get word following a related (van–truck) as compared to an
unrelated (hat–truck) prime (Bentin, Mccarthy, & Wood,
1985). Such influences on N400 amplitudes have been
obtained not only for written, spoken, and signed words
(Kutas, Neville, & Holcomb, 1987), but also for other mean-
ing-evoking stimuli, such as faces (Barrett & Rugg, 1989),
objects (Barrett & Rugg, 1990), sounds (Van Petten &
Rheinfelder, 1995) and mathematical symbols
(Niedeggen, Rösler, & Jost, 1999).

Furthermore, N400 amplitudes decrease with repetition
priming (Nagy & Rugg, 1989), and this repetition-induced
decrease is modulated by lexical and semantic variables,
namely being stronger for low frequency words (Rugg,
1990), and for words with many semantic features
(Rabovsky, Sommer, & Abdel Rahman, 2012b). In addition,
N400 amplitudes have been shown to vary as a function of
lexical or semantic properties of single words. They are
influenced by, for example, word frequency, with larger
amplitudes for low frequency words (Van Petten & Kutas,
1990), and orthographic neighborhood size, with larger
amplitudes for words with many orthographic neighbors
(Holcomb, Grainger, & O’Rourke, 2002). Finally, N400
amplitudes are influenced by semantic richness (indicated
by the number of semantic features or associates, word
concreteness, or the depth of associated knowledge), with
larger amplitudes for words with richer semantic repre-
sentations (Holcomb, Kounios, Anderson, & West, 1999;
Kounios & Holcomb, 1994; Laszlo & Federmeier, 2011;
Müller, Dunabeitia, & Carreiras, 2010; Rabovsky, Sommer,
& Abdel Rahman, 2012a, 2012c).

1.2. N400 theories and models

Despite the large body of data on N400 modulations, as
yet there is no agreement on the specific mechanisms
underlying this component. Various theories concerning
the functional basis of the N400 have been proposed, sug-
gesting that N400 amplitudes reflect the effort or difficulty
involved in semantic memory access (Kutas & Federmeier,
2000; Van Berkum, 2009), the match or mismatch between
expected and encountered semantic features (Paczynski &
Kuperberg, 2012), lexical access (Lau, Phillips, & Poeppel,
2008), semantic integration/unification (Baggio &
Hagoort, 2011; Brown & Hagoort, 1993), semantic binding
(Federmeier & Laszlo, 2009), or semantic inhibition
(Debruille, 2007). Thus, there are a variety of verbally-
described theories of the N400’s functional basis, most of
them relating N400 amplitudes to an aspect of semantic
processing.

The debate regarding the functional basis of the N400
could benefit from simulating the meaning-related N400
component in implemented computational models of
meaning. Implemented computational models explicitly
specify assumed mechanisms, and allow comprehensive
exploration of the implications of theoretical assumptions
(McClelland, 2009). Thus, relating N400 amplitude modu-
lations to variations in measures of implemented compu-
tational models might advance a mechanistic
understanding of the functional basis of the N400.

There are at least two possible approaches for gaining a
better understanding of the N400 component by means of
computational modeling. First, one might attempt to
implement a neurally realistic model of the brain processes
underlying the generation of this ERP component. In this
spirit, Laszlo and Plaut (2012) presented a model of ERPs
during word, nonword, and acronym reading. Their model
incorporated neurophysiologically motivated constraints
to enhance its neural plausibility and produce curves of
total semantic activation that resembled the N400 compo-
nent. Specifically, they separated excitation and inhibition
(each unit could either be inhibitory or excitatory),
reduced the number of inhibitory units, allowed inhibitory
connections within but not between layers, and used a par-
ticular (‘‘elbowed’’) inhibitory response function. Using
arbitrary semantic representations, they compared mean
activation of the semantic units for words, acronyms,
pseudowords, and consonant strings, and found patterns
of semantic activation that mirrored influences of ortho-
graphic neighborhood size on N400 amplitudes. Notably,
in addition to simulating the N400, these authors also con-
tributed to the literature by making more general points
concerning how to achieve neurobiological plausibility
when simulating ERPs with connectionist models.

1.3. Our modeling approach

There remain major challenges entailed by the com-
plexities of the neural processes underlying the generation
of scalp-recorded ERPs. Therefore, a second possible
approach is to provide further understanding of the cogni-
tive mechanisms underlying the N400 by directly relating
variations in N400 amplitudes to variations in parameters
produced by models of cognitive processes while leaving
out the level of description of their complex neural realiza-
tion and refraining from attempting to reproduce N400
morphology. This is the approach that we take, using a
model that has successfully simulated a number of behav-
ioral results in the semantic memory literature (Cree,
McNorgan, & McRae, 2006; Mirman & Magnuson, 2008;
O’Connor, Cree, & McRae, 2009). Following the common
approach of describing the functional significance of ERP
components depending on which factors modulate their
amplitude, we investigated the functional significance of
the N400 by examining whether variations in N400 ampli-
tudes over a series of N400 paradigms would covary with a
specific cognitive process (as simulated by an imple-
mented model of meaning). This approach may entail los-



Fig. 1. Network architecture.
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ing some possibly interesting information with respect to
neural realization. However, it allowed us to focus on our
main goal, which is to understand the cognitive mecha-
nisms underlying the N400 component, and thus to con-
tribute to the theoretical debate about its functional basis.

We focused on connectionist models with error-driven
learning because these have been successfully used to
explain a range of phenomena in semantic cognition
(Cree, McRae, & McNorgan, 1999; Cree et al., 2006;
O’Connor et al., 2009; Rogers & McClelland, 2008). From
a connectionist perspective, as discussed by Rogers and
McClelland (2008), semantic cognition is considered to
arise from activation flowing among simple processing
units according to the strength of the weights connecting
the units. Semantic knowledge is assumed to be stored in
these connection weights which are gradually adjusted
by experience. In response to a perceptual input such as
a word or an object, it is assumed that the semantic system
makes information available that is not directly present in
the input. Thus, upon seeing a dog or a bird, a person with a
fully developed semantic system can roughly anticipate
how it would sound if the respective animal indeed made
a sound, or what might happen if a cat approached it. Sim-
ilarly, when reading sentences such as ‘‘I take my coffee
with cream and. . .’’ contextual information interacts with
semantic memory, generating anticipations of congruent
semantic features which may facilitate the processing of
possible sentence continuations. Semantic representations
develop by adjusting the connection weights supporting
these anticipations based on the difference between the
anticipations and actual outcomes, resulting in more accu-
rate anticipations as learning progresses. In this way, such
implicit predictions gradually improve through experience.

In connectionist models, such learning corresponds to
the activation of a specific input pattern (representing per-
ceptual input), which results in activation flowing accord-
ing to connection weights, producing a specific output
pattern (representing implicit predictions) which is com-
pared to a target pattern (representing actual outcomes).
Connection weights are then adjusted based on network
error, which is the difference between the model’s gener-
ated output and the target (representing implicit predic-
tions and actual outcomes, respectively).

For the present simulations, we used Cree et al.’s (2006)
connectionist attractor model of word meaning (depicted
in Fig. 1). The model has a two-layer architecture. The
input layer consists of 30 abstract word form units, in
which each word form is represented by a unique set of
three of the 30 units, and is meant to represent either
orthography (spelling) or phonology (how words sound).
The output layer consists of 2526 semantic feature units
that represent word meaning, based on representations
for 541 object concepts that were empirically derived from
McRae et al.’s (2005) semantic feature production norms.
McRae et al. had participants list semantic features for
541 living and nonliving thing basic-level concepts, and
retained all features that were produced by at least 5 of
30 participants. Across the 541 concepts, a total of 2526
distinct semantic features were produced. Thus, in the
model, each word’s meaning is represented as a distributed
pattern across the 2526 semantic feature units (an activa-
tion value of 1 if a feature was listed for the respective con-
cept in the norms by at least 5 participants, and 0 if not).
Thus, the semantic representation for dog, for example,
included features such as <has 4 legs>, <barks>, <has
fur>, <has a tail>, <is domestic>, and so on. The word form
input units are unidirectionally fully connected to the
semantic units, and the semantic units are fully bidirec-
tionally interconnected, with no self-connections. The
word form units are not interconnected.

When a word form is presented to the model at the
input layer, the model’s task is to compute word meaning,
that is, to activate the semantic features associated with
that word form. It does so by gradually activating the cor-
responding semantic feature units via both the connec-
tions from the input units to the semantic units, and the
direct interconnections between semantic feature units.
Because it is an attractor network, this process happens
over time. In the case of the present model, semantic rep-
resentations settle over 20 so-called ‘time ticks’ or activa-
tion cycles (representing model time).

The model was trained using the recurrent backpropa-
gation through time training algorithm (Pearlmutter,
1995). Thus, during each training trial, the input was a
word form such as dog, and the model activated semantic
features depending on the current connection strengths
(which are random in the beginning, so that the activated
features are initially random as well). Subsequently, the
target (the correct semantic activation pattern) was pre-
sented to the model. For example, the target representa-
tion for dog includes activations of 1 for dog features
such as <has 4 legs> and <barks>, with all features not
included in the dog concept having a target activation of
0. The model then learns by adjusting the strength of all
connections based on network error, obtained by calculat-
ing for each semantic unit the discrepancy between the
activation produced by the model (varying between 0
and 1) and the target semantic activation (either 0 or 1).
One training run through all 541 words from McRae
et al.’s (2005) feature production norms is called a training
epoch. After 20 training epochs, the model performed well
in terms of activating the correct semantic feature units
and deactivating the other feature units for all 541 words.

Including only abstract word form input units and
semantic feature units, the model provides a simplified
description of word recognition processes as a whole.
However, the present research focuses on understanding
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the mechanisms underlying the N400 ERP component, and
this focus is consistent with the fact that our model was
designed primarily to provide insight into the semantic
factors underlying word processing. That is, because the
N400 seems to be a functionally specific electrophysiolog-
ical indicator of semantic processing (Kutas & Federmeier,
2011), independent of input modality (e.g., visual or audi-
tory) and domain1 (e.g., words or pictures), it seems appro-
priate to use a model that emphasizes semantic
computations.

Two measures taken from the model’s semantic feature
layer seem to be of particular interest in relation to the
N400 component. The first is the total amount of semantic
activation. This was the measure used by Laszlo and Plaut
(2012). However, it is important to note that their network
differed in several respects from ours (as described above),
so that the activation results from the two models are not
directly comparable. Total semantic activation corresponds
to the sum of the activation of all semantic feature units
(each ranging from 0 to 1), calculated at each of the 20 time
ticks. Conceptually, this corresponds to the total amount of
activation in the semantic system in response to a specific
word. With respect to theories of the N400, total semantic
activation may be related to the ease or difficulty of
semantic access (Kutas & Federmeier, 2000), insofar as elic-
iting more semantic activity could be viewed as being
more difficult. In addition, if predicted semantic features
are activated in advance of the stimuli, then transient
semantic activation can correspond to the match or mis-
match between expected and encountered semantic fea-
tures (Paczynski & Kuperberg, 2012) and the difficulty of
semantic integration/unification (Baggio & Hagoort, 2011).

Second, semantic network error also is a promising can-
didate (we used cross-entropy error, which is described in
Section 2.4). Network error is based on the difference, for
each semantic unit, between the activation produced by
the model and the correct semantic activation (1 for fea-
tures that belong to the concept, and 0 for all other fea-
tures). As noted above, network error is often
conceptualized as implicit prediction error, with model-
generated and correct output representing implicitly pre-
dicted and actual information respectively (Elman, 1990;
McClelland, 1994; O’Reilly, Munakata, Frank, Hazy, &
Contributors, 2012; Rogers & McClelland, 2008). Interest-
ingly, McClelland (1994) discusses a relation between
implicit prediction error in connectionist models and the
N400 component. The idea that the neuro-cognitive sys-
tem is ‘‘constantly predicting upcoming input and moni-
toring the consistency of the anticipated and actual
outcomes’’ (Kutas, DeLong, & Smith, 2011, p. 202) has
received a wave of support over the years (Bar, 2009;
Barsalou, 2009; Clark, 2013; Friston, 2009; Furl, van
Rijsbergen, Treves, Friston, & Dolan, 2007; Rao & Ballard,
1999; Schultz, Dayan, & Montague, 1997; Summerfield
et al., 2006), and has often been related to event-related
brain potentials (Chase, Swainson, Durham, Benham, &
Cools, 2011; Cohen & Ranganath, 2007; Friston, 2005;
1 There are, however, slight differences in the spatial distributions across
the scalp (see e.g. Van Petten & Luka, 2006)
Garrido, Kilner, Stephan, & Friston, 2009; Holroyd &
Coles, 2002; Wacongne, Changeux, & Dehaene, 2012;
Walsh & Anderson, 2012).

It is important to note that this type of implicit predic-
tion and prediction error is not meant to correspond to any
active, conscious, explicit prediction of specific items. The
idea that is central to the current account is rather that
the brain constantly extracts statistical regularities from
the environment and builds an internal model of probabil-
ity distributions in the environment to optimize process-
ing. Constantly aiming to update this internal model, the
brain is highly sensitive to mismatches between the inter-
nal model and the external world, which can be considered
as implicit prediction errors. For instance, an internal
model should encode the fact that, in general, it is less
probable to encounter a low frequency as compared to a
high frequency word. Therefore, implicit prediction error
would be higher for low frequency words. Thus, in this
sense of implicit prediction error, there does not need to
be interdependences among subsequent time points for
prediction to occur. Implicit prediction error is influenced
not only by prior activation induced by the relation
between subsequent time points, as for example in seman-
tic priming paradigms, or in a sentence context, but also by
connection strengths. Connection strengths are shaped by
experience and hence by statistical regularities in the envi-
ronment so that they reflect probability distributions, as in
a higher probability for a high frequency than for a low fre-
quency word. An alternative term for such implicit predic-
tion error would be mismatch with Bayesian priors,2 or
Bayesian surprise (Clark, 2013; Doya, Ishii, Pouget, & Rao,
2007; Ostwald et al., 2012). Thus, in that sense, N400 ampli-
tudes could be viewed as reflecting Bayesian surprise in the
semantic system.

Indeed, N400 amplitude modulations in many para-
digms appear to have one thing in common. Specifically,
they are a function of the fit between the information that
is implicitly anticipated based on statistical regularities
across levels of representation as represented in semantic
memory (semantic context, relations between words, fre-
quency of occurrence of single words) and the actually pre-
sented information. Thus, we hypothesized that N400
amplitudes might reflect implicit prediction error in
semantic memory in this sense of the term, represented
by error values in a network model of meaning. This
model-based account of the N400 in terms of implicit pre-
diction error in the semantic system conceptually overlaps
to various degrees with some of the verbally described the-
ories of the N400. Specifically, the current account maps
well onto the views that the N400 reflects the ease or dif-
ficulty of accessing features in semantic memory (Kutas &
Federmeier, 2011), or the match or mismatch between
probabilities. However, in sequential Bayesian updating, even though
context-dependent information may already be integrated in a prediction,
this ‘‘posterior’’ relative to lacking contextual information becomes the new
‘‘prior’’ relative to the upcoming word. We believe that the N400 reflects
the prediction error contained in the prior relative to the upcoming word.
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expected and encountered semantic features (Paczynski &
Kuperberg, 2012). We return to this issue in Section 4.

Because data on lexical decision performance is avail-
able for the N400 effects that we simulated, we also related
both network error and semantic activation to behavioral
performance. However, it seems important to note that
unlike ERPs which reflect specific sub-processes occurring
between stimulus presentation and response (such as
semantic processes in the case of the N400), behavioral
performance in lexical decision tasks presumably relies
on a variety of sub-processes and mechanisms, some of
which are not implemented in the present model. For
instance, the model is lacking in the sense that the word
form layer is abstract, and no attempt was made to simu-
late, for example, letter features, letters, phonemes, or sta-
tistical regularities within orthography or phonology.
Furthermore, the model does not include components that
simulate decision processes. Following Seidenberg and
McClelland (1989), we assume that word reading involves
orthographic, phonological, and semantic processes, and
that lexical decision tasks require participants to establish
appropriate decision criteria to discriminate between
words and nonwords. These decision criteria can in princi-
ple involve any of the several dimensions along which
words and nonwords differ (e.g., meaning, orthographic
familiarity, phonological familiarity) and are presumably
optimized according to the stimulus composition in an
experiment. For instance, when the nonwords are highly
orthographically atypical (e.g. kzlpxr), participants can base
their decisions entirely on orthographic information (the
presence or absence of familiar letter combinations), so
that semantic variables may have little influence on the
decisions. As an example, the richness of semantic repre-
sentations typically facilitates lexical decisions (Pexman,
Lupker, & Hino, 2002). However, using orthographically
rather atypical nonwords, Rabovsky et al. (2012c) observed
semantic richness effects on N400 amplitudes, indicating
an influence of semantic richness on semantic processes,
but these influences on semantic processes did not have
any effects on lexical decision performance, presumably
because participants adopted response criteria based on
orthographic familiarity (for other examples of divergences
between N400 amplitudes and behavioral responses please
see e.g. Blackford, Holcomb, Grainger, & Kuperberg, 2012;
Holcomb, Grainger, & O’Rourke, 2002).

However, whenever meaning-related decision criteria
are useful to optimize performance in a given experimental
situation (Seidenberg & McClelland, 1989), we assume that
semantic computations as implemented in the present
model feed into lexical decision processes. For example,
because words have meanings but nonwords do not, high
semantic activation can facilitate crossing a decision
threshold to produce a ‘‘word’’ decision. Thus, we also
examined the relation between measures taken from the
model’s semantic feature layer and behavioral perfor-
mance in lexical decision tasks.

In summary, the primary goal of the present study was to
test the hypothesis that N400 amplitudes reflect implicit
prediction error in the semantic system, represented by net-
work error values in an implemented model of meaning. To
this end, we used Cree et al.’s (2006) model of word meaning
to simulate seven N400 effects obtained in human empirical
research on word processing. We examined the correspon-
dence between the N400 and both semantic network error
and semantic activation. Specifically, we simulated influ-
ences of semantic priming (Simulation 1), semantic richness
(Simulation 2), word frequency (Simulation 3), repetition
(Simulation 4), as well as influences of semantic richness
on repetition effects (Simulation 5), influences of word fre-
quency on repetition effects (Simulation 6), and influences
of orthographic neighborhood size (Simulation 7).
2. The model

2.1. Network architecture

The network is depicted in Fig. 1. There are 30 word
form input units that are intended to represent either
orthography or phonology. These units are fully unidirec-
tionally connected to 2526 directly interconnected seman-
tic feature units representing word meaning. Directly
interconnected feature units (without self-connections)
were used so that the network naturally and transparently
learns correlations among features, a variable that influ-
ences a number of semantic tasks (McRae, Cree,
Westmacott, & de Sa, 1999; Tyler & Moss, 2001).

2.2. Training patterns

2.2.1. Word form units
Input patterns were abstract word form representations

that can be interpreted as either spelling or sound. Each
word’s form was represented by activating a unique set
of 3 of the 30 input units to 1, whereas the 27 other input
units were turned off (0). Of the 91390 possible input pat-
terns, 541 were assigned randomly (without replacement)
to the 541 concept names from McRae et al.’s (2005)
semantic feature production norms. Thus, other than pre-
cluding identical word form representations, there were
no constraints on overlap among them. The representa-
tions were intended to capture the facts that word form
representations overlap to varying degrees, and that the
relation between word form and meaning is largely arbi-
trary for monomorphemic English words.

2.2.2. Semantic units
Semantic representations were based on McRae et al.’s

(2005) semantic feature production norms, as described
in Section 1. Note that we used semantic representations
precisely as produced by human participants, so that there
are no experimenter degrees of freedom in the feature-
based representations. Finally, another advantage of using
words/concepts from McRae et al.’s norms is that because a
number of the experiments that are simulated in this arti-
cle used stimuli from those norms, we were able to use the
identical stimuli in our simulations.

2.3. Computation of word meaning

To compute a word’s meaning, the corresponding word
form was presented at the input layer and activation prop-
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agated to the semantic layer for 20 time ticks, segmented
into 4 time steps, each consisting of 5 ticks. The activation
pattern produced at the semantic layer was interpreted as
the meaning of the word. Before presenting a word form,
semantic units were set to randomly selected activation
values between 0 and .1 so that the network began in a
random initial state.

Input to a semantic unit was calculated as the activation
of a sending unit multiplied by the weight of the connec-
tion from that sending unit. The net input xj (at tick t) to
unitj was calculated according to Eq. (1),

x½t�j ¼ s
X

i

s½t�s�
i wji þ bj

 !
þ ð1� sÞx½t�s�

j ð1Þ

where si is the activation of uniti, and wji is the weight on
the connection between uniti and unitj. s(tau) is a constant
between 0 and 1 used to denote the duration of each time
tick (0.2 in the present model). Thus, x½t�s�

j is the net input
to unitj at the previous time tick. Each time tick is a subdi-
vision of a time step, and consists of passing activation for-
ward one step. Time ticks discretize and simulate
continuous processing between time steps (Plaut,
McClelland, Seidenberg, & Patterson, 1996). The activation
of unitj at time t (aj

[t]) was calculated using the sigmoidal
activation function presented in Eq. (2), where xj

[t] is the
net input to unitj from Eq. (1) (at time t).

a½t�j ¼
1

1þ e
�x½t�

j

� � ð2Þ

Note that although we include all time ticks (except for
the initial state at tick 0) in the simulation analyses pre-
sented below, we consider the first 3 ticks as being some-
what less informative than later ticks because they are
primarily driven by the model moving away from the initial
activation values. Also note that the initial summed activa-
tion at tick zero (which is approximately 126 for all but the
semantic priming simulation) is not depicted in any figure,
which instead begin with tick 1 when the summed semantic
activation has begun to decrease. Including tick 0 would dra-
matically increase the scale of the figures’ y-axes, and thus
would distort the depiction of the experimental effects dur-
ing the meaningful time ticks.

2.4. Training

The model was trained with the continuous backpropa-
gation through time algorithm (Pearlmutter, 1995), using
the rbp program of the PDPTool simulation package imple-
mented in MATLAB (available at http://www.stanford.edu/
group/pdplab/resources.html). At the beginning of train-
ing, weights were initialized to random values between
±.05. During each training epoch, all 541 concepts were
presented in random order (exceptions in the training pro-
cedure for the frequency-sensitive model are reported in
the frequency simulation section). On each training trial,
the word form pattern was hard-clamped (i.e., activated
at every time tick) at the input layer. For the first 10 time
ticks, activation freely propagated to the semantic layer
and within the semantic layer according to the current
connection strengths in the model, and for the last 10 time
ticks, the target semantic activation pattern was provided.
This allows semantic patterns to settle gradually because
the training regime does not constrain the network to
compute the correct representation until tick 11. The dif-
ference between the model-generated semantic activation
pattern and the target semantic activation pattern (net-
work error) was used as a basis for adapting the connection
weights (the connection weights between semantic units,
and the weights between orthographic and semantic units,
were modified by training). The learning procedure adjusts
the strength of all connections in proportion to the extent
to which this change reduces network error. Specifically,
we used cross-entropy as the measure of network error.
Cross-entropy error is more suitable than are the more fre-
quently used squared-error measures for two reasons.
First, during training, features can be considered as being
either present (on) or absent (off), and intermediate states
are understood as the probability that each feature is part
of the concept. Thus, the activation of the semantic layer
represents a probability distribution that is used in com-
puting cross entropy (Plunkett & Elman, 1997). Second,
cross-entropy error is beneficial for sparse networks; the
present network is sparse because only 5–21 of the 2526
feature units should be on for each concept. Cross entropy
produces large error values when a unit’s activation is on
the incorrect side of .5. Because one possible way for the
present sparse network to reduce error is to turn off all
semantic feature units, punishing it for incorrectly turning
units off allows the model to more easily change these
units’ states. Cross-entropy error (E), averaged over the last
two time steps (10 ticks) was computed as in Eq. (3),

E ¼ s
P19

t¼10

P2526
j¼0 dj lnðajÞ þ ð1� djÞ lnð1� ajÞ

10
ð3Þ

where dj is the desired target activation for unitj, and aj is
the unit’s observed activation.

The learning rate was .01 and momentum of .9 was
added after the first 10 training epochs. Because we
assume that humans do not compute absolutely perfect
semantic representations (there is a bit of noise), training
was stopped after 20 epochs. At that point, over 99% of
all features for all 541 concepts were correct in the sense
of being activated above .7 for units intended to be on,
and below .3 for units intended to be off.

During the simulations involving repetition effects
(Simulations 4, 5, and 6), learning was left operative, using
the same learning rate of .01 as in initial training. It is
important to note that having learning ‘on’ vs. ‘off’ does
not introduce any difference in network performance mea-
sures; the difference between ‘on’ and ‘off’ does not influ-
ence current error or activation values; influences are
apparent only in subsequent simulation trials. To maintain
consistency with the simulations that did not include rep-
etition as a factor, rather than using on-line learning (i.e.,
weight updating after each item), we trained all items from
the first presentation together as a group (batch training)
between the first and second presentations of items. The
network did not learn about the sequential order of the
items because, as noted above, semantic units were reset

http://www.stanford.edu/group/pdplab/resources.html
http://www.stanford.edu/group/pdplab/resources.html
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to randomly selected activation values between 0 and .1 at
the beginning of each trial.

It is also important to note that having learning ‘on’ is
not assumed to reflect active instructed learning. Instead,
it corresponds to implicit adaptation processes assumed
to take place automatically as a result of stimulus process-
ing (also see Stark & McClelland, 2000). Leaving learning
‘on’ may influence subsequent implicit prediction error
via the adaptation of connection weights and thus, concep-
tually, via adaptation of representations of occurrence
probability.
3. Simulations

We present seven simulations covering a number of
variables known to influence N400 amplitudes. We inves-
tigated the correspondence between influences of these
variables on N400 amplitudes, as reported in the literature,
and influences of the same variables on two model mea-
sures, semantic network error, and total semantic activa-
tion. The most plausible initial assumption seems to be
that larger values of a specific measure (error or activation)
correspond to larger N400 amplitudes. The results are pre-
sented for network error on the left, and total semantic
activation on the right. A summary of the simulation
results is presented in Table 1. To foreshadow those
results, in all seven simulations, higher network error cor-
responded to larger N400 amplitudes. On the other hand,
higher semantic activation corresponded to larger N400
amplitudes in one simulation only. Thus, the reverse rela-
tionship, lower activation corresponding to larger N400
amplitudes, was observed in six of the seven simulations.

Because many variables known to influence N400
amplitudes also influence behavioral performance in lexi-
cal decision tasks, data on lexical decision performance
are available for the simulated studies. Therefore, we also
examined the correspondence between lexical decision
performance and both semantic network error and activa-
tion. Although it is not clear how semantic network error
Table 1
Summary of simulations. The second line for each simulation indicates the human d
rates) with which the model patterns. In parentheses are the time ticks during w

Simulation Human N400 Human behavior

Semantic Priming Related < unrelated Related < unrelate

Semantic Richness High > low High < low

Frequency High < low High < low

Repetition Repeated < initial Repeated < initial

Semantic Richness � Repetition Interaction Interaction

Frequency � Repetition Interaction Interaction

Orthographic Neighbors Many > few ?

a Stronger repetition-induced reduction for words with many features.
b Stronger repetition-induced increase for words with many features.
c Stronger repetition-induced reduction for low frequency words.
d Stronger repetition-induced increase for low frequency words.
could be used as a basis to distinguish words from non-
words because nonwords do not have semantic represen-
tations (meaning), error for words has often been related
to the process of settling into a representation and hence
decision latencies for different types of words, with lower
error corresponding to response facilitation. In addition,
higher semantic activation may correspond to facilitated
responses, because in lexical decision tasks, words have
meaning whereas nonwords do not, so that increased
semantic activation may help crossing a threshold to pro-
duce a ‘word’ decision. To foreshadow the results, lower
error corresponded to facilitated responses in five of six
simulations, whereas higher activation corresponded to
facilitated responses in six of six simulations (for the sev-
enth simulation, concerning orthographic neighborhood
effects, the empirical evidence is controversial; see below
for further discussion).

3.1. Simulation 1: Semantic priming

Semantic priming paradigms frequently have been used
to study the organization of semantic memory (see
Hutchison, 2003; Lucas, 2000, for reviews). Although there
are variations in procedures, in a typical priming study, a
prime (e.g., truck) is presented for a short period of time,
followed by a target (van). Participants read the prime,
and then respond to the target, often by making a lexical
decision. The related condition is compared to an unrelated
condition in which the target is preceded by an unrelated
prime (shirt–van). A number of studies have found reduced
N400 amplitudes to target words following semantically
related as compared to unrelated primes (Bentin et al.,
1985; Kutas & Federmeier, 2011), as well as facilitated
responses for related targets (McRae & Boisvert, 1998).

3.1.1. Methods
To simulate semantic priming, the model was presented

with 36 related and unrelated word pairs used by McRae
and Boisvert (1998), with the unrelated pairs created by
ata (N400 amplitudes or behavioral measures, i.e., response times and error
hich the effect is significant in the simulation.

Model error Model activation

d Related < unrelated (1–10) Related > unrelated (3–6)
N400 & behavior Behavior
High > low (1–7) High > low (6–20)
N400 N400 & behavior
High < low (4–20) High > low (6–7)
N400 & behavior Behavior
Repeated < initial (1, 4–20) Repeated > initial (4–10)
N400 & behavior Behavior
Interactiona (2, 4–20) Interactionb (5–10)
N400 & behavior Behavior
Interactionc (6–20) Interactiond (8–10, 15–17, 19–20)
N400 & behavior Behavior
Many > few (8–20) Many < few (1, 2, 4–8)
N400 –
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re-arranging the primes and targets from the related pairs.
According to McRae et al.’s (2005) norms, the target and
related prime shared 6.6 features on average (range: 2–
14), whereas the target and unrelated prime shared only
0.9 features on average (with shared features typically
being general features such as <is large>). To simulate each
trial, activation of semantic units were initialized to ran-
dom values between 0 and .1, the prime’s word form was
presented for 20 ticks, directly followed by presentation
of the target word, for 20 ticks as well. Thus, when the tar-
get’s word form was presented initially to the network,
activation in the semantic layer corresponded to the set-
tled activation pattern for the prime.
3.1.2. Results
The results of Simulation 1 are presented in Fig. 2.

Semantic activation in Fig. 2 is the total semantic activa-
tion during the processing of the prime, and then the tar-
get. Because related primes were shuffled to create the
unrelated prime-target pairs, semantic activation is nearly
identical for the related and unrelated conditions during
prime processing (with small deviations due to differences
in random starting configurations). In contrast, the net-
work error that is presented in Fig. 2 during prime process-
ing is relative to the target word. That is, when van was the
target, truck was the related prime, and shirt was the unre-
lated prime, error is presented relative to van. This pro-
vides a measure of the distance between the current
activation in the network and the target word’s semantic
representation throughout a prime-target trial. This dis-
tance is shorter (network error is lower) for related com-
pared to unrelated primes during prime processing
because targets share a greater number of features with
their related primes.

Network error and total semantic activation during tar-
get word processing were submitted to separate repeated
measures analyses of variance. The two within-items inde-
pendent variables were relatedness (semantically related
vs. unrelated prime) and time (ticks 21–40). Thus, the anal-
yses began one tick after the target word form was input to
the network.
Fig. 2. Influences of semantic priming on net
Analyses of network error to target words revealed
lower error for semantically related targets,
F(1,35) = 72.16, p < .001, g2 = .67. The relatedness effect
changed over time, as shown by a relatedness by time
interaction, F(19,665) = 88.36, p < .001. Planned compari-
sons revealed significantly lower network error for related
targets from ticks 21 to 30 (all Fs > 8.82, all ps < 01).

Analyses of activation showed greater total semantic
activation for semantically related targets, F(1,35) = 6.03,
p < .05, g2 = .15. Relatedness again interacted with time,
F(19,665) = 3.21, p < .05. Activation was marginally higher
for related targets at ticks 22 and 27 (Fs > 3.95, ps < .10),
and significantly higher from tick 23 to 26 (Fs > 5.52,
ps < .05).

3.1.3. Discussion
Consistent with N400 amplitudes (Bentin et al., 1985;

Kutas & Federmeier, 2011), network error was reduced
for targets presented after semantically related as com-
pared to unrelated primes. On the other hand, relatively
early during the time course of computing word meaning,
semantic activation was larger for related as compared to
unrelated targets, which is opposite to well-established
N400 results. Instead, the results may be taken to suggest
that higher semantic activation (as observed in our model)
could contribute to facilitating behavioral responses to
semantically related as compared to unrelated targets
(McRae & Boisvert, 1998).

3.2. Simulation 2: Semantic richness

N400 amplitudes are larger for words with richer
semantic representations, such as concrete words
(Holcomb et al., 1999; Kounios & Holcomb, 1994;
Kounios et al., 2009; West & Holcomb, 2000), words with
a higher number of semantic features (Amsel, 2011;
Rabovsky et al., 2012c; but see Kounios et al., 2009), words
with a higher number of associates (Laszlo & Federmeier,
2011; Müller et al., 2010), and newly learned words asso-
ciated with in-depth as compared to minimal semantic
information (Rabovsky et al., 2012a). A number of studies
have shown facilitated behavioral responses for words
work error (left) and activation (right).
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with a greater number of semantic features (Grondin,
Lupker, & McRae, 2009; Pexman et al., 2002), words with
more associates (Dunabeitia, Aviles, & Carreiras, 2008)
and concrete as compared to abstract words (e.g. Kounios
& Holcomb, 1994).

3.2.1. Methods
We simulated semantic richness effects by presenting

the model with Rabovsky et al.’s (2012c) stimuli comprised
of 80 words with a high number of features (M = 16.1) and
80 words with a low number of features (M = 9.3), accord-
ing to McRae et al.’s (2005) norms. Stimulus groups did not
differ in terms of the number of associates, familiarity, con-
creteness, length, word frequency, or bigram frequency,
phonological neighbors, phonemes and syllables as well
as the number of orthographic neighbors and overlap in
the model’s word form representations (i.e. the number
of word forms differing in a single input unit).

3.2.2. Results
The results of Simulation 2 are presented in Fig. 3. Error

and activation were submitted to separate mixed analyses
of variance with richness (high vs. low) as a between-items
variable and time (ticks 1–20) as a within-items variable.

Error was higher for words with many as compared to
few semantic features, F(1,158) = 130.09, p < .001,
g2 = .31. This richness effect interacted with time,
F(19,3002) = 179.78, p < .001. Planned comparisons
revealed that the richness effect was significant at ticks
1–7 (all Fs > 6.73, all ps < .05).

Semantic activation was higher for words with many as
compared to few semantic features, F(1,158) = 250.99,
p < .001, g2 = .19. Richness interacted with time,
F(19,3002) = 95.83, p < .001, with a significant richness
effect at ticks 6–20 (all Fs > 8.52, p < .01).

3.2.3. Discussion
Both network error and activation were higher for

words with many as compared to few semantic features.
Thus, both measures could account for larger N400 ampli-
tudes for words with richer semantic representations as
reported in the literature (Amsel, 2011; Holcomb et al.,
1999; Kounios & Holcomb, 1994; Kounios et al., 2009;
Laszlo & Federmeier, 2011; Müller et al., 2010; Rabovsky
Fig. 3. Influences of semantic richness on net
et al., 2012a, 2012c; West & Holcomb, 2000). In addition,
higher activation (but not higher error) could also account
for the observed behavioral facilitation for words with
richer semantic representations (Dunabeitia et al., 2008;
Grondin et al., 2009; Pexman, Hargreaves, Siakaluk,
Bodner, & Pope, 2008; Pexman, Holyk, & Monfils, 2003;
Pexman et al., 2002).
3.3. Simulation 3: Word frequency

N400 amplitudes are larger for low frequency as com-
pared to high frequency words (e.g. Barber, Vergara, &
Carreiras, 2004; Rabovsky, Alvarez, Hohlfeld, & Sommer,
2008; Van Petten & Kutas, 1990). In addition, behavioral
responses are facilitated for high frequency words
(Forster & Chambers, 1973). From a connectionist perspec-
tive, word frequency effects reflect variability in the
amount of training for the respective words.
3.3.1. Methods
To simulate influences of lexical frequency, the amount

of training for every word was determined by its lexical
frequency. Specifically, the number of occurrences of each
of the 541 words per training epoch corresponded to the
natural logarithm of its frequency in the British National
Corpus (BNC). Please note that due to the different training
procedure, the fine-grained details of the results, specifi-
cally the size of the effects, are not directly comparable
with the other simulations. After training, we presented
the network with 70 high frequency words, with mean
BNC frequency of 3704 [mean ln(BNC) was 7.7], and 70
low frequency words, with mean BNC frequency of 66
[mean ln(BNC) was 3.8]. Stimuli were selected from
McRae et al. (2005), and the high and low frequency words
did not differ in terms of the number of semantic features,
intercorrelational density, word length, as well as the num-
ber of orthographic neighbors and overlap in the model’s
word form representations.
3.3.2. Results
The results of Simulation 3 are presented in Fig. 4.

Network error and activation were submitted to mixed
analyses of variance with word frequency (high vs. low)
work error (left) and activation (right).



Fig. 4. Influences of word frequency on network error (left) and activation (right).
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as a between-items variable and time (ticks 1–20) as a
within-items variable.

Network error was significantly smaller for high fre-
quency words, F(1,138) = 10.19, p < .01, g2 = .07. Frequency
interacted with time, F(19,2622) = 7.91, p < .01, with sig-
nificant frequency effects extending from ticks 4 to 20
(all Fs > 5.01, all ps < 05).

For total semantic activation, there was no significant
main effect of frequency (F < 1). However, frequency inter-
acted with time, F(19,2622) = 2.14, p < .05. At ticks 6 and 7,
there was higher activation for high than for low frequency
words (Fs > 4.91, ps < .05, g2s > .03). The frequency effect
was marginally significant at tick 5, F(1,138) = 3.06, p = .08.
3.3.3. Discussion
In good correspondence with reduced N400 amplitudes

for high frequency words (Barber et al., 2004; Rabovsky
et al., 2008; Van Petten & Kutas, 1990), error was smaller
for high frequency as compared to low frequency words.
On the other hand, semantic activation was larger for high
frequency words at ticks six and seven. Thus, there was little
effect of frequency on semantic activation, and the differ-
ences that did occur were in the opposite direction of
N400 amplitudes. If anything, the results are more in line
with the possibility that higher semantic activation (as
observed in our model) may contribute to behavioral facili-
tation for high frequency words (Forster & Chambers, 1973).

To obviate possible concerns that the word frequency
effect might be driven by feature frequency rather than
word frequency itself, we calculated the mean feature fre-
quency of each word, that is, the number of words (con-
cepts) in the training set in which a feature occurs times
the frequency of those words, averaged across all features
in a word. Feature frequency was actually higher for the
low frequency words (M = 155) than for the high frequency
words (M = 124), t(69) = �3.32, p < .01. Therefore, any pos-
sible confounding influences of feature frequency would
presumably oppose the influence of word frequency. As
there seems to be a relatively straightforward relationship
between more training (i.e., higher frequency) and lower
error, in the sense that training typically reduces error,
we are confident that the obtained frequency effects on
network error were caused by word frequency rather than
feature frequency.

Finally, we note two factors that influence the size of the
word frequency effects on network error. The first is the
amount of training. Early on in training, word frequency
effects are substantial, because the connections involved in
the high frequency words are much better adapted than
those involved in the low frequency words. However, later
during training, low frequency words begin to catch up. This
is because, on average, the high frequency words more
quickly reach a point at which they induce relatively low
error values so that error-driven learning produces smaller
weight changes. In the meantime, low frequency words con-
tinue to produce relatively large error values, which induce
larger changes in connection weights – they benefit more
from each additional training trial, so that they catch up to
higher frequency words to some degree. The second factor
is the implementation of frequency. In the present simula-
tion, we used the natural logarithm of frequency in the Brit-
ish National Corpus [ln(BNC)] as a proxy. If we had used the
actual frequency in the BNC instead of the natural logarithm,
the frequency effect would have been much larger (due to
3704 vs. 66 occurrences per epoch instead of 7.7 vs. 3.8). It
seems difficult to know exactly which frequency difference
in a model with only 541 words at which point in training
corresponds to the difference between BNC frequency val-
ues of 3704 and 66 in proficient adult human readers who
are exposed to a much wider and more dynamic range of
stimuli. However, we were primarily interested in the direc-
tion of the effects, that is, which model measure was influ-
enced in the same direction as N400 amplitudes, rather
than their absolute magnitude. And the direction of the
effects, that is, higher frequency producing lower error val-
ues, depends on basic learning principles in connectionist
models.
3.4. Simulation 4: Repetition

N400 amplitudes are reduced by repetition (Kiefer,
2005; Kounios & Holcomb, 1994; Kutas & Federmeier,
2011; Nagy & Rugg, 1989; Rabovsky et al., 2012b; Rugg,
1990; Sim & Kiefer, 2005). In addition, repetition facilitates
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behavioral responses (Scarborough, Cortese, &
Scarborough, 1977). In connectionist models, repetition
effects have been simulated as the influence of one addi-
tional training trial on the respective word (Stark &
McClelland, 2000).

3.4.1. Methods
We simulated repetition effects by presenting 160 con-

crete nouns (used by Rabovsky et al., 2012b) twice to the
model, in two successive blocks. As noted above, in con-
trast to the other simulations reported herein, learning
was left on throughout (learning rate = .01). We then com-
pared error and semantic activation between the first pre-
sentation and the repetition.

3.4.2. Results
The results of Simulation 4 are presented in Fig. 5. Net-

work error and activation were submitted to separate
repeated-measures analyses of variance with repetition
(first presentation vs. repetition) and time (ticks 1–20) as
within-items variables.

Error was reduced for repetitions as compared to first
presentations, F(1,159) = 75.50, p < .001, g2 = .32. Further-
more, there was a significant interaction between repeti-
tion and time, F(19,3021) = 68.32, p < .001. Error was
reduced for repetitions at tick 1 and at ticks 4–20 (all
Fs > 10.31, ps < .01).

Total semantic activation was higher for repetitions as
compared to first presentations of the stimuli,
F(1,159) = 5.07, p < .05, g2 = .03. The repetition effect also
interacted with time, F(19,3021) = 99.68, p < .001. From
ticks 4 to 10, activation was significantly higher for repeti-
tions as compared to first presentations (Fs > 25.57,
ps < .001). An effect in the opposite direction was obtained
during the first two ticks (Fs > 275.47, ps < .001), although
because this is the first two time ticks, it is unlikely to be
meaningful. Due to the reversal in the direction of effects,
there was no difference at tick 3 (F < 1).

3.4.3. Discussion
Network error corresponded with N400 amplitudes in

that it was smaller for repetitions as compared to first pre-
Fig. 5. Influences of repetition on networ
sentations (Kiefer, 2005; Kounios & Holcomb, 1994; Nagy
& Rugg, 1989; Rabovsky et al., 2012b; Rugg, 1990; Sim &
Kiefer, 2005). In contrast, the results for activation are
opposite to the N400 results. The extreme repetition
effects on activation during the first two ticks is not highly
informative because they presumably are driven primarily
by the model moving away from the initial state activa-
tions of the feature units. During the rising edge of activa-
tion and around the activation maximum (ticks 4–10),
activation was higher for repetitions as compared to first
presentations, which is opposite to well-established N400
results, and instead seems more in line with the idea that
higher activation (as observed in our model) can facilitate
behavioral responses, resulting in facilitated performance
for repeated words (e.g. Scarborough et al., 1977).

It should be noted that the size of the repetition effect
depends partly on the amount of training. Because the
present model was not trained to asymptote (see Meth-
ods), there remained an opportunity for a substantial influ-
ence of one additional presentation (i.e., the most recent
weight changes). If the model was trained initially for a
greater number of epochs, repetition effects would have
been smaller. Furthermore, repetition effects potentially
depend on the number of repeated words in the sense that
the size of the repetition effects might differ depending on
whether the changes in the connection weights for the
recently experienced words (concepts) partly interfere or
are consistent with one other. However, we were primarily
interested in the direction of the effects rather than their
absolute magnitude, and we are confident that the direc-
tion, that is, an additional training trial entailing reduced
error values, is stable across such variations.
3.5. Simulation 5: Influences of semantic richness on
repetition effects

A recent study has found semantic richness to enhance
repetition effects, with larger repetition-induced reduc-
tions of N400 amplitudes and error rates for words with
many as compared to words with few semantic features
(Rabovsky et al., 2012b). Similar results have been
k error (left) and activation (right).
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obtained for concrete vs. abstract words (Kounios &
Holcomb, 1994).

3.5.1. Methods
To simulate the influence of semantic richness on repe-

tition effects, we used the 80 words with many and 80
words with few semantic features from Rabovsky et al.
(2012b) that were also used in Simulation 2. The stimuli
were presented twice to the model, in two successive
blocks, with learning left operative. We then compared
repetition effects on network error and activation for
words with many vs. few semantic features.

3.5.2. Results
The results of Simulation 5 are presented in Fig. 6. Net-

work error and activation were submitted to separate mixed
analyses of variance with richness (high vs. low) as a
between-items variable, and repetition (first presentation
vs. repetition) and time (ticks 1–20) as within-items
variables.

Overall, error was reduced for the repeated presenta-
tion of words, F(1,158) = 80.89, p < .001. Importantly, there
was a significant interaction between richness and repeti-
tion, F(1,158) = 12.36, p < .01, g2 = .07, indicating stronger
Fig. 6. Influences of repetition on network error (left) and activation (right), for
(bottom).
repetition-induced reduction for words with many seman-
tic features, F(1,79) = 52.95, p < .001; g2 = .40, as compared
to words with few semantic features, F(1,79) = 28.73,
p < .001, g2 = .27.

The interaction between richness and repetition varied
across time, giving rise to a significant three-way interac-
tion, F(19,3002) = 4.49, p < .05). Further analyses showed
that the interaction between richness and repetition was
significant at tick 2, as well as from ticks 4 to 20 (all
Fs > 6.21, all ps < .05).

Semantic activation was larger for repeated words as
compared to their initial presentation, F(1,158) = 5.56,
p < .05. There was a significant interaction between rich-
ness and repetition, F(1,158) = 16.40, p < .001, g2 = .09. This
interaction varied across time ticks, giving rise to a signif-
icant three-way interaction between richness, repetition
and time, F(19,3002) = 11.45, p < .001.

As can be seen in Fig. 6, this three-way interaction was
mainly due to two groups of time ticks differing concern-
ing the nature of the interaction between richness and rep-
etition. Relatively early on, during the rising edge of
activation and around the maximum (ticks 5–10), repeti-
tion induced an increase in activation that was more pro-
nounced for words with many features than for words
words with either high semantic richness (top) or low semantic richness
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with few features. Analyses of ticks 5–10 revealed an influ-
ence of repetition, F(1,158) = 142.30, p < .001, and a rich-
ness by repetition interaction, F(1,158) = 10.30, p < .01.
This interaction was due to a larger repetition effect for
words with many features, F(1,79) = 87.85, p < .001, g2 = .53,
than for words with few features, F(1,79) = 54.65,
p < .001, g2 = .41.

On the other hand, later on, repetition slightly increased
activation for words with many features, while decreasing
activation for words with few features. Analyses of ticks
11–20 revealed no main effect of repetition, F(1,158) =
1.53, p > .2, but a significant interaction between richness
and repetition, F(1,158) = 18.00, p < .001. For words with
many features, the slight repetition-induced increase was
marginally significant, F(1,79) = 2.93, p < .1. This was quali-
fied by an interaction between repetition and time,
F(9,711) = 7.62, p < .01, with further tests showing that rep-
etition was significant at tick 11, F(1,79) = 7.93, p < .01, and
a trend at ticks 17–20 (Fs > 2.80, ps < .10). For words with
few features, there was actually a decrease in activation
from the initial to repeated presentations, F(1,79) = 32.66,
p < .001.

3.5.3. Discussion
Consistent with N400 amplitudes (Kounios & Holcomb,

1994; Rabovsky et al., 2012b), network error showed an
enhanced repetition-induced reduction for words with
many features as compared to words with few features.
Activation values corresponded less well with N400 ampli-
tudes. During the rising edge of the activation and around
the maximum, activation showed an enhanced repetition-
induced increase for words with many as compared to
words with few semantic features. Although the enhance-
ment of the repetition effect for words with many features
is in line with findings for the N400, the overall direction of
the repetition effect, namely a repetition-induced increase,
is opposite to repetition effects on the N400. Instead, if
higher semantic activation can facilitate performance, the
results for the activation measure could account for the
enhanced repetition-depended facilitation of lexical deci-
sions for words with many features (Rabovsky et al.,
2012b).

3.6. Simulation 6: Influences of frequency on repetition effects

Repetition-induced N400 amplitude reductions have
been found to be enhanced for low frequency as compared
to high frequency words (Rugg, 1990; Young & Rugg,
1992). In addition, in behavioral measures, low frequency
words have also shown stronger repetition effects
(Forster & Davis, 1984; Norris, 1984).

3.6.1. Methods
We used the model from Simulation 3 in which the

amount of training depended on lexical frequency accord-
ing to the British National Corpus. Stimuli were the same
70 high frequency and 70 low frequency words (mean
BNC frequency of 3704 vs. 66, mean ln(BNC) of 7.7 vs.
3.8), used in Simulation 3. Stimuli were presented twice
to the model, in two successive blocks, with learning left
operative, and repetition effects were compared between
high and low frequency words.

3.6.2. Results
The results of Simulation 6 are presented in Fig. 7. Net-

work error and activation were submitted to separate
mixed analyses of variance with frequency (high vs. low)
as a between-items variable, and repetition (first presenta-
tion vs. repetition) and time (ticks 1–20) as within-items
variables.

Overall, error was reduced for repeated words,
F(1,138) = 114.88, p < .001. Importantly, this repetition
effect was modulated by frequency, F(1,138) = 13.83,
p < .001, g2 = .09. The interaction resulted from stronger
repetition-induced reduction for low frequency words,
F(1,69) = 74.97, p < .001, g2 = .52, as compared to high fre-
quency words, F(1,69) = 40.17, p < .001, g2 = .37. There also
was a three-way interaction among repetition, frequency,
and time, F(19,2622) = 7.37, p <.001. The frequency by rep-
etition interaction was marginal at tick 5, F(1,138) = 3.77,
p = .054, and significant from ticks 6 to 20 (all Fs > 7.67,
all ps < .01).

Semantic activation was enhanced for repeated words,
F(1,138) = 62.80, p < .001. Importantly, this repetition
effect was modulated by frequency, F(1,138) = 5.62,
p < .05, g2 = .04. Further analyses showed a stronger repeti-
tion-induced increase for low frequency words,
F(1,69) = 36.70, p < .001, g2 = .35, than for high frequency
words, F(1,69) = 27.74, p < .001, g2 = .29. There was a
three-way interaction among repetition, frequency, and
time, F(19,2622) = 3.59, p < .01. Repetition interacted with
frequency at ticks 8–10, as well as at ticks 15, 16, 17, 19,
and 20 (all Fs > 4.15, all ps < .05), and it was marginally sig-
nificant at ticks 12, 14, and 18 (all Fs > 2.88, all ps < .10).

3.6.3. Discussion
Consistent with N400 amplitudes (Rugg, 1990; Young &

Rugg, 1992), network error decreased with repetition, and
this repetition-induced decrease was stronger for low fre-
quency as compared to high frequency words.

In contrast, semantic activation corresponded less well
with N400 amplitudes. Although frequency interacted
with repetition, with larger effects for low frequency
words, the overall direction of this repetition effect,
namely an increase of activation for repeated words, is
opposite to N400 data (Rugg, 1990; Young & Rugg, 1992).
On the other hand, semantic activation was consistent
with the observation of stronger repetition-induced behav-
ioral facilitation for low frequency words (Forster & Davis,
1984; Norris, 1984).

3.7. Simulation 7: Influences of orthographic neighborhood
size

N400 amplitudes are larger for words with many ortho-
graphic neighbors (N; i.e., the number of words that can be
obtained from the target word by exchanging a single let-
ter, preserving letter position; Holcomb, Grainger, &
O’Rourke, 2002; Laszlo & Federmeier, 2011). The present
model focuses on semantic representations and is not opti-
mally suited for simulating orthographic neighborhood



Fig. 7. Influences of repetition on network error (left) and activation (right), for words with either low lexical frequency (top) or high lexical frequency
(bottom).
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effects because statistical orthographic regularities are not
encoded in the word form input layer. However, because
the only previous model of the N400 specifically focused
on these effects (Laszlo & Plaut, 2012), we also simulated
influences of orthographic neighborhood size.

Whereas orthographic neighborhood size consistently
has been found to increase N400 amplitudes (Holcomb,
Grainger, & O’Rourke, 2002; Laszlo & Federmeier, 2011),
its influence on behavioral responses is inconsistent across
studies. Holcomb et al. (2002) found shorter decision
latencies for words with a greater number of orthographic
neighbors. However, Coltheart, Davelaar, Jonason, and
Besner’s (1977) original investigation of orthographic
neighborhood effects found an inhibitory effect for non-
word decisions, and no influence on word decisions. Other
studies have obtained conflicting results, with Andrews
(1989) reporting a facilitatory effect of orthographic neigh-
borhood size, but only for low frequency words, whereas
Grainger, Oregan, Jacobs, and Segui (1989) found inhibi-
tory effects. Later attempts to resolve the conflict revealed
that orthographic neighborhood effects on behavioral per-
formance depend on many factors including the relative
frequency of the orthographic neighbors and the type of
overlap (e.g. Andrews, 1997; Ziegler & Perry, 1998).
Attempting to reconcile this set of behavioral data is
beyond the scope of the present study, which is primarily
concerned with influences on N400 amplitudes.

3.7.1. Methods
We calculated the amount of overlap among word form

representations. Specifically, as a model estimate of ortho-
graphic neighborhood size, for each word form representa-
tion, we calculated the number of other word forms with
which it shared two input units and thus differed by only
a single input unit. Word form representations differing
in a single input unit were considered orthographic neigh-
bors. The number of orthographic neighbors ranged from 3
to 21 (M = 10.9). For the simulation, we then presented the
model with the 70 words that had the largest orthographic
neighborhood (P15 neighbors) and the 70 with the small-
est (67 neighbors). These groups did not differ in terms of
the number of semantic features.

3.7.2. Results
The results of Simulation 7 are presented in Fig. 8. Error

and activation were submitted to separate mixed analyses



Fig. 8. Influences of orthographic neighborhood size (N) on network error (left) and activation (right).
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of variance with orthographic neighborhood size (large vs.
small) as a between-items variable and time (ticks 1–20)
as a within-items variable.

Error was significantly higher for words with many as
compared to few orthographic neighbors, F(1,138) = 5.02,
p < .05, g2 = .04. This orthographic neighborhood effect
interacted with time, F(19,2622) = 3.35, p < .05. Planned
comparisons revealed that the orthographic neighborhood
effect was significant at ticks 8–20 (all Fs > 3.94, all
ps < .05).

There was no main effect of orthographic neighborhood
size on semantic activation, F(1,138) = 2.33, p = .13. How-
ever, orthographic neighborhood size interacted with time,
F(19,2622) = 4.37, p < .01, with significantly higher activa-
tion for words with a smaller orthographic neighborhood
at ticks 1, 2, and 4–8 (all Fs > 7.65, ps < .01, g2 > .05).

3.7.3. Discussion
Network error was higher for words with a greater

number of orthographic neighbors, in line with larger
N400 amplitudes for these words (Holcomb et al., 2002;
Laszlo & Federmeier, 2011). On the other hand, semantic
activation was slightly lower for words with many neigh-
bors, which is opposite to the larger N400 amplitudes.

It seems somewhat difficult to relate network measures
to influences of orthographic neighborhood size on lexical
decision performance for a couple of reasons. First, the
empirical evidence is inconsistent. Second, orthographic
neighborhood size presumably primarily influences lexical
decisions via decision criteria concerning orthographic
familiarity, and has been successfully simulated at the
orthographic level of representation without assuming
influences from semantics (Grainger & Jacobs, 1996).
Therefore, potential influences of orthographic neighbor-
hood size on semantic processes as simulated in the pres-
ent model may simply not be relevant to decision criteria
and hence outcomes in lexical decisions (see Seidenberg
& McClelland, 1989).

4. General discussion

The present research investigated the computational
mechanisms underlying the N400 component of the ERP
by relating N400 amplitude modulations to variations in
two measures taken from an attractor network model of
word meaning, semantic network error and total semantic
activation. Our goal was to investigate potential cognitive
processes underlying N400 amplitude modulations, rather
than their neural realization. We simulated a number of
N400 effects obtained in human empirical research on
word processing: influences of semantic priming (Simula-
tion 1), semantic richness (Simulation 2), word frequency
(Simulation 3), and word repetition (Simulation 4), as well
as influences of semantic richness on repetition effects
(Simulation 5), word frequency on repetition effects (Sim-
ulation 6), and orthographic neighborhood size (Simula-
tion 7). A summary of the results is presented in Table 1.

In all seven simulations, semantic network error was in
the same direction as N400 amplitudes. Like the N400,
error was lower for semantically related target words
(see Fig. 2; Bentin et al., 1985), higher for words with richer
semantic representations (Fig. 3; Holcomb et al., 1999;
Kounios & Holcomb, 1994; Laszlo & Federmeier, 2011;
Müller et al., 2010; Rabovsky et al., 2012a, 2012c) and
higher for low frequency words (Fig. 4; Van Petten &
Kutas, 1990). Furthermore, error was lower for repeated
words (Fig. 5; Nagy & Rugg, 1989), and this repetition-
induced decrease was stronger for words with richer
semantic representations (Fig. 6; Kounios & Holcomb,
1994; Rabovsky et al., 2012b), and for low frequency words
(Fig. 7; Rugg, 1990). Finally, error was higher for words
with many orthographic neighbors (Fig. 8; Holcomb
et al., 2002; Laszlo & Federmeier, 2011).

In contrast, there was less consistency between seman-
tic activation and the N400. Like N400 amplitudes, activa-
tion was larger for words with richer semantic
representations (Fig. 3). However, activation also increased
with frequency, repetition, semantic priming, and a smal-
ler orthographic neighborhood (Figs. 2 and 4–8), which is
opposite to N400 results. Instead, the results may be more
in line with the notion that increased semantic activation
can facilitate lexical decisions (see Section 4.3 for further
discussion). Importantly, our results suggest an interesting
relation between N400 amplitudes and semantic network
error.

4.1. The N400 as implicit prediction error in semantic memory

On a psychological level, network error has been con-
ceptualized as implicit prediction error, with model-gener-
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ated and correct output representing implicit prediction
and observation, respectively (Elman, 1990; McClelland,
1994; O’Reilly et al., 2012; Rogers & McClelland, 2008;
see Section 1.3). Thus, the consistent relation between
N400 amplitudes and error values in our semantic network
model suggests that N400 amplitudes reflect implicit pre-
diction error in semantic memory (McClelland, 1994).

As discussed in Section 1, the model provides a simpli-
fied description of word recognition processes (including
only abstract word form units and semantic features),
but as the present work focuses on understanding the
mechanisms underlying the N400 ERP component which
is seen as a functionally specific electrophysiological indi-
cator of semantic processing (Kutas & Federmeier, 2011),
it seems appropriate to use a model that focuses on seman-
tic computations. The model illustrates several important
points. We assume that N400 amplitudes reflect implicit
prediction error at the level of semantic features. Note that
we do not claim that the semantic features used in our
model precisely mirror those in the human conceptual sys-
tem; rather, they provide a window into those representa-
tions (see McRae et al., 2005, for a more detailed
discussion). This implicit prediction error is presumably
influenced by both general and conditional probabilities
of occurrence. That is, it is influenced by the general occur-
rence probability of any individual feature, as well as by
the probability of each feature to occur together with the
other features in the currently relevant set (correlated fea-
tures). Implicit prediction error is influenced further by the
mapping between the input (word form) and the semantic
features, that is, by the probability of the semantic features
given the specific input units. Based on the empirical evi-
dence (Kutas & Federmeier, 2011), we assume that N400
amplitudes reflect implicit semantic prediction error inde-
pendent of input modality and type.3 Therefore, prediction
error at the semantic layer is key, and semantic
computations could be initiated by other forms of input
(e.g., a picture). There is no specific relation to lexical repre-
sentations which are assumed to modulate prediction error
at the semantic layer via the strength of their connections
with semantic features, not qualitatively different from
other forms of input representation. Even though the pres-
ent model does not include components such as attention
or intention, we also assume, based on empirical evidence,
that the processes underlying N400 amplitudes are (like
many other processes) modifiable by attention (McCarthy
& Nobre, 1993) and strategy (Lau, Holcomb, & Kuperberg,
2013), as well as the inherent salience of certain features
(Paczynski & Kuperberg, 2012). Thus, the implicit predictive
processes presumably occuring constantly and automati-
cally can be enhanced by attention and active prediction,
resulting in stronger modulations of the N400 (Lau et al.,
2013).

The suggestion that N400 amplitudes reflect implicit
semantic prediction error seems consistent with proposals
relating other ERP negativities to prediction errors in other
domains. These include the more frontally distributed
3 Even though, as noted above, there are slight differences in spatial
distributions across the scalp (see e.g., Van Petten & Luka, 2006).
feedback-related negativity (FRN) that has been related
to reward prediction error (Cavanagh, Frank, Klein, &
Allen, 2010; Chase et al., 2011; Cohen & Ranganath,
2007; Holroyd & Coles, 2002; Walsh & Anderson, 2012),
as well as the mismatch negativity (MMN), which is pre-
sumably related to implicit prediction errors in processing
auditory stimulus sequences (Garrido et al., 2009;
Wacongne et al., 2012), and the visual mismatch negativity
(vMMN), its visual counterpart (Kimura, Kondo, Ohira, &
Schroger, 2011; Winkler & Czigler, 2012).

In line with such an account in terms of implicit predic-
tion error, N400 amplitudes seem to depend crucially on
the similarity between actual observations and implicit
anticipations based on represented occurrence probabili-
ties as extracted from previously experienced regularities.
From this perspective, N400 amplitudes are larger for
semantic violations and low cloze probability sentence
continuations, because low or zero cloze words occur less
frequently in the respective contexts and are therefore less
expected. The represented occurrence probability for low
frequency words is presumably generally rather low,
resulting in enhanced implicit prediction error and thus
enhanced N400 amplitudes for low frequency words.
Recent exposure to a word presumably enhances its repre-
sented occurrence probability, giving rise to repetition-
induced reductions of implicit prediction error and hence
N400 amplitudes. Increased N400 amplitudes for concepts
with a greater number of semantic features can be
explained by assuming that for every semantic feature, it
is on average less probable that it is involved in the cur-
rently relevant concept than that it is not involved because
semantic representations are sparse. This is definitely true
for the features in the norms of McRae et al. (2005), and
hence in the present model, where on average each of
the 2526 features occurs in only 2.87 out of the 541 con-
cepts, so that the average probability for a feature to be
included in the currently relevant concept is below 1%.
Thus, the presence of any specific semantic feature is
improbable, and even though the norms obviously do not
cover the entire space of concepts and features, it seems
reasonable to assume that this pattern generalizes beyond
this reduced semantic space. Hence, every semantic fea-
ture may signal implicit prediction error when it is (overall
unexpectedly) involved in the current concept, resulting in
higher cumulative implicit prediction error and thus larger
N400 amplitudes for words with more semantic features.

From the present perspective, larger N400 amplitudes
for larger orthographic neighborhoods (e.g. Holcomb
et al., 2002; Laszlo & Federmeier, 2011) may be explained
by the fact that the conditional probability for specific
semantic features is strongly dependent on the ortho-
graphic input, or in other words, the mapping is less
unequivocal and more difficult for words with many ortho-
graphic neighbors. That is, if the visual input dish is pre-
sented, the conditional probability for the semantic
features of the orthographic neighbors fish and wish is pre-
sumably enhanced, whereas the conditional probability for
the features of dish may be not as high as in case when
there are no orthographically similar words (because the
input ish is not a clear predictor of the semantic features
of dish). Thus, implicit prediction error might be higher
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for words with many orthographic neighbors both because
implicit expectations for semantic features that are not
part of the target semantic representation are misleadingly
increased, and because the implicit expectations for the
semantic features that are part of the target semantic rep-
resentation are lower than they would be with a more
unique word form.

The influence of orthographic neighborhood size on the
N400 has been shown to be independent of lexical type, so
that N400 amplitudes were larger for words and pseudo-
words than for acronyms and illegal letter strings (Laszlo
& Federmeier, 2011). Even though we did not compare
these types of stimuli, the orthographic neighborhood size
simulation seems relevant, and Laszlo and Federmeier’s
findings appear to fit well with the idea that N400 ampli-
tudes reflect implicit semantic prediction error. Specifi-
cally, misleadingly high implicit expectations for the
semantic features of the orthographic neighbors of both
words and pseudowords, and somewhat weakened expec-
tations for the correct semantic features of the words (due
to the lack of unambiguity of the predictions derived from
visual input) could both contribute to higher implicit pre-
diction error for these types of stimuli. On the other hand,
acronyms (i.e., lexical stimuli without orthographic neigh-
bors) presumably elicit expectations only for the correct
semantic features (because the input pattern is quite
unique), and illegal strings presumably correctly elicit very
little expectation for semantic features at all, so that impli-
cit prediction error would be low in both cases.

Interestingly, Laszlo and Federmeier (2011) also report
an influence of neighbor frequency on the N400, with lar-
ger N400 amplitudes for words with higher as compared
to lower frequency neighbors. Although we did not simu-
late this study, it is plausible that error induced by ortho-
graphic neighbors would be stronger if these neighbors
were of higher frequency. This is because stronger connec-
tions for the higher frequency neighbors than for the target
word would aggravate the misleadingly high expectation
of the semantic features of the orthographic neighbor
and the lower expectation of the correct semantic features
of the target.

Semantic priming effects, that is, smaller N400 ampli-
tudes to target words following a semantically related as
compared to an unrelated prime word, can be due to two
mechanisms. First, related words may often co-occur in
language, so that the occurrence of one word may increase
the probability of encountering the other word, and there-
fore implicit prediction error would be lower (similar to
the sentence context manipulations discussed above). This
is presumably the case for some types of associated words,
namely those that tend to follow one another in language
(e.g., dog-bark or bread-butter). Word co-ocurrence was
not implemented in the present model’s training regime.
Second, related words may share semantic features. The
present semantic priming simulation used featurally-simi-
lar words (concepts). From the present perspective, one
can assume that the current brain state (including seman-
tic activation) is mostly a good predictor of the next brain
state (including semantic activation), because usually the
environment (and its meaning) does not all of a sudden
change completely. Thus, less change (e.g. due to overlap-
ping semantic features between subsequent stimuli)
entails lower prediction error (see McRae, de Sa, &
Seidenberg, 1997, for further discussion).

The present model-based account of the N400 in terms
of implicit prediction error in the semantic system concep-
tually overlaps with some of the verbally described theo-
ries on the N400. Specifically, the current account is
consistent with the views that the N400 reflects the ease
or difficulty of accessing features in semantic memory
(Kutas & Federmeier, 2011; Van Berkum, 2009), or the
match or mismatch between expected and encountered
semantic features (Paczynski & Kuperberg, 2012).

Debruille (2007) suggested that N400 amplitudes
reflect semantic inhibition. As erroneously predicted
semantic features may need to be inhibited for the net-
work to settle into the correct semantic pattern, inhibition
might be expected to substantially co-vary with implicit
semantic prediction error. It may be interesting to prospec-
tively explore the extent to which inhibitory activity co-
varies with error values, and whether and how inhibition
and error can be disentangled.

Lau et al. (2008) suggest that N400 effects reflect facil-
itated lexical access. The authors discuss predictive pro-
cesses as a source of facilitation, so that there exists
substantial conceptual overlap with the current account.
However, their focus is on facilitation at the lexical level,
whereas the current account suggests that the N400
reflects implicit prediction error at the level of semantics
which can in principle be activated from different stimulus
modalities and domains.

It has also been suggested that the N400 reflects seman-
tic unification (Baggio & Hagoort, 2011), that is, the inte-
gration of semantic information accessed from the
current stimulus with the current semantic context, a pro-
cess that gives rise to an overall semantic representation
that is not pre-stored in memory. In our view, the effort
involved in such a unification process crucially depends
on the internally represented probability for the semantic
features of the current stimulus to co-occur with those
already activated by context, so that semantic unification
depends on implicit semantic prediction and prediction
error. From our perspective, the present account is more
general than the semantic unification theory in that it
relates N400 amplitudes not only to the probability of
occurrence of semantic features insofar as it can be
deduced from the currently active set, but to the probabil-
ity of occurrence of semantic features more generally
(which for example can be additionally deduced from gen-
eral occurrence probability, i.e., frequency).

As outlined above, some theories posit the N400 at spe-
cific levels in a processing hierarchy (lexical access, higher-
level contextual integration) and have problems accommo-
dating N400 modulations induced by manipulations affect-
ing a different level (e.g., an integration account has
problems accommodating word frequency effects; see
Kutas & Federmeier, 2011, for further discussion). In con-
trast, understanding N400 amplitudes as reflecting implicit
prediction error in the semantic system can naturally
explain N400 modulations induced by variables affecting
different levels of processing. This is the case as long as
the manipulation influences the match (at the level of
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semantic features) between implicit anticipations (based
on previously experienced regularities across levels of rep-
resentation as represented in semantic memory) and the
current stimulus. However, we are not arguing that the
N400 reflects these different levels. The N400 is assumed
to reflect implicit prediction error in semantic memory,
and variables affecting different levels of processing can
influence N400 amplitudes insofar as they modulate the
local context and thereby modulate conditional probabili-
ties in semantics. From this perspective, contextual manip-
ulations (sentences, categories, events) that modulate the
conditional occurrence probability for specific aspects of
meaning should modulate N400 amplitudes.

It is crucial to note that the sort of implicit prediction
discussed here is not meant to correspond to active, con-
scious, explicit prediction of specific lexical items. Indeed,
violations of active predictions of specific lexical items
may not be reflected in N400 amplitudes, but instead in
subsequent ERP positivities (Federmeier, Wlotko, De
Ochoa-Dewald, & Kutas, 2007; Lau et al., 2013; Paczynski
& Kuperberg, 2011; Van Petten & Luka, 2012). One possibil-
ity might be that N400 amplitudes reflect implicit predic-
tion error and adaptation in long-term semantic memory,
whereas subsequent positivities may reflect a similar pro-
cess – prediction error and update - in active working
memory (e.g., Polich, 2007). Kuperberg (2013) more specif-
ically suggested that the basis for this prediction error and
update in working memory may be the combinatorial inte-
gration of semantic features with other types of represen-
tations. She argues that the posterior late positivity is
triggered by a prediction error for a specific semantic-syn-
tactic mapping that is disconfirmed by the input, whereas
the anterior late positivity is triggered by a prediction error
for a specific semantic-wordform mapping (specific lexical
item) that is disconfirmed by the input.

Finally, we would like to note that although N400
amplitudes were not consistently related to the amount
of activation in the semantic layer in our simulations, if
expected semantic features are pre-activated prior to the
occurrence of the relevant stimulus, then transient seman-
tic activation (i.e., during the computations required for
moving from the initial/predicted activation state to the
correct activation state) can be correlated with semantic
error. Thus, in that sense, there is a correspondence
between Laszlo and Plaut’s (2012) model and the current
model.

4.2. The N400 and implicit memory formation

Error-driven learning is common in connectionist mod-
eling, reflecting the assumption that implicit prediction
error drives implicit memory formation. The assumption
that humans generate implicit anticipations based on an
internal model of the environment, and adapt their inter-
nal model based on the discrepancy between prediction
and observation, is widely shared in cognitive science
and neuroscience (Clark, 2013; den Ouden, Daunizeau,
Roiser, Friston, & Stephan, 2010; den Ouden, Friston,
Daw, McIntosh, & Stephan, 2009; Friston, 2005, 2009;
McClelland, 1994; McLaren, 1989; Schultz & Dickinson,
2000; Tobler, O’Doherty, Dolan, & Schultz, 2006). This con-
ception has also been related to language processing in a
recent review, where Kutas et al. (2011, p. 201) discuss
the view that ‘‘an unexpected item triggers updating in a
learning signal, where probability likelihoods are being
adjusted for the future’’, with comprehenders benefitting
‘‘by gaining an accurate model of their linguistic
environment.’’

Intriguingly, if N400 amplitudes reflect semantic net-
work error, and this error drives connection adaptation,
then enhanced N400 amplitudes should imply enhanced
connection adaptation, that is, enhanced implicit memory
formation. Although there is a large literature on N400
effects related to memory retrieval (i.e. the so-called
‘familiarity’ N400; see e.g., Curran, 2000; Voss &
Federmeier, 2011), there is not a great deal of evidence
on the relation between N400 amplitudes and memory
encoding. However, a few studies may be relevant.

Schott, Richardson-Klavehn, Heinze, and Düzel (2002)
reported larger N400 amplitudes during a learning phase
to predict implicit memory during test (as assessed by rep-
etition priming effects on stem completion in the absence
of explicit memory). In addition, a recognition memory
study by Meyer, Mecklinger, and Friederici (2007) seems
pertinent. The authors combined a study phase that
included coherent and anomalous sentences with a recog-
nition memory test phase. Words presented as semanti-
cally anomalous sentence endings (which as usual
elicited larger N400 amplitudes) produced the strongest
N400 old/new effect in the test phase (i.e., more centro-
parietal positivity for repeated as compared to new words).
In addition, Meyer et al. reported significant correlations
across participants between overall N400 amplitudes dur-
ing study and N400 old/new effects during test. Interest-
ingly, even though they discussed the N400 old/new
effect in the context of familiarity-based recognition, its
modulation was not accompanied by influences on explicit
recognition memory performance so that it may have
reflected implicit repetition priming. Relatedly, Olichney
et al. (2000) observed impaired recognition and recall per-
formance but intact N400 incongruity and repetition
effects in amnesic patients, in line with preserved implicit
memory formation in amnesia.

Furthermore, a longitudinal study by Friedrich and
Friederici (2006) showed that age-adequate as compared
to poor language skills at 30 months were predicted by
the presence (vs. absence) of N400 effects at 19 months.
Friedrich and Friederici (2010) found that 12 month old
infants with high early word production showed an N400
semantic priming effect whereas those with low early
word production did not, even for words that they suppos-
edly understood (as rated by their parents). Friedrich and
Friederici (2010, p. 70) concluded that ‘‘although the com-
bined results [. . .] suggest that the early functioning of the
N400 neural mechanisms strongly interacts with the chil-
dren’s language development, we still cannot describe this
interaction in detail.’’ They discuss several interpretations
of the observed relation, including the possibility ‘‘that
the mechanisms underlying the N400 elicitation are
directly involved in the word learning process.’’ Interest-
ingly, this possibility would be naturally implied by
assuming that N400 amplitudes reflect implicit semantic
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prediction error that drives learning and adaptation in the
lexical-semantic system.

In summary, although further evidence is required,
there are indeed some hints suggesting a relation between
N400 amplitudes and implicit memory formation, in line
with the proposed model-based account of N400 ampli-
tudes as reflecting implicit prediction error in the semantic
system. Because implicit prediction error is assumed to
drive implicit memory formation, yielding an intrinsic
relation between error and adaptation, it is not entirely
clear whether N400 amplitudes reflect implicit prediction
error, or whether they might rather reflect the connection
adaptations driven by implicit prediction error.
4.3. Semantic activation and lexical decision performance

Our simulations yielded little support for the notion
that N400 amplitudes covary directly with the amount of
semantic activation. Although activation was larger for
words with richer semantic representations, which is in
line with N400 amplitudes (Amsel, 2011; Holcomb et al.,
1999; Kounios & Holcomb, 1994; Laszlo & Federmeier,
2011; Müller et al., 2010; Rabovsky et al., 2012a, 2012c;
West & Holcomb, 2000), activation also increased with
semantic priming, frequency, repetition, and a small ortho-
graphic neighborhood, which is opposite to N400 results
(Bentin et al., 1985; Holcomb et al., 2002; Laszlo &
Federmeier, 2011; Nagy & Rugg, 1989; Van Petten &
Kutas, 1990). Instead, if anything, our simulations may be
taken to suggest a relation between semantic activation
and behavioral performance with high semantic activation
facilitating lexical decisions. It is important to note that our
discussion here focuses on lexical decisions only rather
than behavioral performance in general, as influences of
semantic activation can depend on the type of task (e.g.,
Chen & Mirman, 2012). Assuming that high semantic acti-
vation can facilitate lexical decisions, the model success-
fully predicted facilitation for semantically related target
words (McRae & Boisvert, 1998; Neely, 1991), repeated
words (Scarborough et al., 1977), high frequency words
(Forster & Chambers, 1973), and words with richer seman-
tic representations (Pexman et al., 2008). In addition, it
predicts enhanced repetition-induced facilitation for low
frequency words (Forster & Davis, 1984), and for words
with richer semantic representations (Rabovsky et al.,
2012b).

It has been suggested that semantic activation can drive
behavioral performance, presumably by feeding into deci-
sion processes in lexical decision tasks (Grondin et al.,
2009). This could be realized in, for example, random walk
models of decision making (Joordens, Piercey, & Azerbehi,
2003; Ratcliff, Gomez, & McKoon, 2004). That is, high
semantic activation may facilitate deciding that a stimulus
is a word and not a nonword because words have meaning
whereas nonwords do not. Thus, high activation levels in
the semantic system may facilitate lexical decisions
because decision thresholds between words and nonwords
are at least partly based on semantic activation and thus
may be easier to cross when semantic activation is high.
In line with such a view, Laszlo and Plaut (2012) also mod-
eled lexical decisions based on thresholded semantic
activation.

As more extensively discussed in Section 1, however,
semantic activation as simulated in the present model
should be related to lexical decision performance only in
cases in which decision criteria based on semantic activa-
tion support optimal (i.e., as fast as possible while main-
taining acceptable accuracy) lexical decisions. For
instance, when simulating orthographic neighborhood
effects, semantic activation may not be a good predictor
of lexical decision performance because orthographic
neighborhood size supposedly has its impact via decision
criteria at the orthographic level of representation
(Grainger & Jacobs, 1996).

5. Conclusion

Using a feature-based attractor network model of word
meaning to simulate seven N400 effects obtained in empir-
ical research on word processing, we consistently found a
close correspondence between network error and N400
amplitudes. Based on conceptualizing network error as
implicit prediction error (Elman, 1990; McClelland, 1994;
O’Reilly et al., 2012; Rogers & McClelland, 2008), these
results suggest that N400 amplitudes reflect implicit pre-
diction error in semantic memory (McClelland, 1994).
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