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Here we present an application of an EEG processing pipeline customizing EEGLAB and

FieldTrip functions, specifically optimized to flexibly analyze EEG data based on single

trial information. The key component of our approach is to create a comprehensive

3-D EEG data structure including all trials and all participants maintaining the original

order of recording. This allows straightforward access to subsets of the data based

on any information available in a behavioral data structure matched with the EEG data

(experimental conditions, but also performance indicators, such accuracy or RTs of

single trials). In the present study we exploit this structure to compute linear mixed

models (LMMs, using lmer in R) including random intercepts and slopes for items. This

information can easily be read out from thematched behavioral data, whereas it might not

be accessible in traditional ERP approaches without substantial effort. We further provide

easily adaptable scripts for performing cluster-based permutation tests (as implemented

in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach

is particularly advantageous for data with parametric within-subject covariates (e.g.,

performance) and/or multiple complex stimuli (such as words, faces or objects) that vary

in features affecting cognitive processes and ERPs (such as word frequency, salience

or familiarity), which are sometimes hard to control experimentally or might themselves

constitute variables of interest. The present dataset was recorded from 40 participants

who performed a visual search task on previously unfamiliar objects, presented either

visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted

to different datasets.

Keywords: EEG, EEGLab, Linear mixed models, cluster-based permutation tests, processing pipeline

INTRODUCTION

If I do something 100 times, will every time be the same? If I classify fruits as apples and pears, how
does the appearance of a particular fruit influence how easily I can identify it as one or the other?
How does my experience in classifying apples and pears shapemy brain responses to this task? How
does variability in neural responses relate to variability in behavior?

Addressing such questions is facilitated by recent developments in statistical and signal
processing methods, paralleled by the emergence of open source toolboxes implementing those
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methods. In many disciplines, ANOVAs, comparing means
between conditions at the level of participant averages are
now complemented by regression-based methods, such as linear
mixed models (LMMs, e.g., Baayen et al., 2008) estimating
manipulation-related trial-by-trial variations in behavior and
neural correlates. Open source toolboxes, such as EEGLAB
(Delorme and Makeig, 2004), allowing for flexible, easy and
transparent access to the data, facilitate the application of such
methods to psychophysiological data (Dambacher et al., 2006;
Dimigen et al., 2011).

WHY CHANGE A WINNING TEAM?
LIMITATIONS OF TRADITIONAL
AVERAGING APPROACHES AND
SOLUTIONS

Typically, after preprocessing (re-referencing, ocular correction,
filtering, segmentation, baseline correction, and artifact
rejection) EEG data are averaged within conditions and
participants, and these averages are then analyzed for mean
differences between conditions and their interactions using
repeated measures ANOVAs. Averaging serves to extract the
event-related potential (ERP) from background activity. This
traditional averaging approach has several limitations. One
of these limitations is related to the implicit assumption that
every participant’s average has the same quality and that the
same number of observations constitutes each of those averages.
In practice EEG datasets often do not meet this assumption
even when equal numbers per cell are experimentally planned.
Differences in performance accuracy and artifact rejection
during EEG-data processing inevitably result in unequal
numbers of trials contributing to individual averages within
participants and conditions. These unequal contributions are
not considered in traditional ANOVA approaches, where every
participant’s average has the same weight in all conditions. A
second limitation is related to the implicit assumption that
experimental manipulations yield uniform effects across all
participants and items. Random variance (individual differences
or variance across items) in effect sizes are not taken into
account. In reality, participants and items may vary substantially
in their effect sizes, which can lead to biases in group-level
estimates. The most severe limitation of the averaging approach
is its dependency on discrete factor levels and its resulting
inability to test for parametric effects. Splitting continuous
variables into categorical variables reduces statistical power and
might conceal nonlinear effects with results critically depending
on the range in which variables were sampled and the way
the variables were split (Cohen, 1983; MacCallum et al., 2002;
Baayen, 2004). Furthermore, splitting and the required matching
of other variables may result in a selection of unusual materials
(Hauk et al., 2006).

As demonstrated by Smith andKutas (2015a), as an alternative
to averaging, ERPs can be estimated using regression procedures
and in fact the averaging method is merely a special case
of the least squares method underlying regression. Table 1

provides an overview of the commonalities and differences of

TABLE 1 | Comparison of methods.

ANOVA Regression LMM

Dependent

variable format

By condition and

participant averages

Single trials Single trials

Predictors Only categorical Categorical and

continuous

Categorical and

continuous

Random intercept

per participant

Yes Not standard Yes

Crossed random

effects

No No Yes

Random slopes No No Yes

ANOVA, regression and linear mixed models (LMMs). LMMs,
like regression and ANOVA, are based on the general linear
model (for an overview, see Bolker, 2008). In addition to
estimating regression weights (or contrasts) at the group level—
fixed effects—they also estimate systematic variance between
individuals—random effects. To put it simply, they jointly
estimate group effects and individual differences—the latter often
considered nuisance in experimental approaches (Cronbach,
1957). Fixed effects include the intercept (b0 in regression terms),
often the grand mean across all participants and conditions
(depending on contrast settings), and effect estimates for each
predictor (i.e., experimental condition or covariate) and specified
interaction terms. Random effects provide estimates for the
variance of these effects. Not formally parameters of the model,
Best Linear Unbiased Predictors (BLUPS) are also provided that
estimate how each participant (or item) systematically varies
from those group level estimates (Baayen et al., 2008). Thus, for
each specified random effect, BLUPS are individual participants’
estimates of those effects relative to the group estimate and can be
read out from the model (examples for BLUPS will be provided
in brackets along with the explanation of the corresponding
different random effects). Random effects include as a minimum
random intercepts, that is how much individuals differ from the
group intercept (the group level P3 component might have an
amplitude of 4.2 µV, but R.F.’s mean amplitude might be 6.3
µV [+2.1 µV], while M.M.’s is 2.7 µV [−1.5 µV] and R.A.R’s
is 3.6 µV [−0.6 µV]). These can also be specified for items,
allowing the dependent variable to vary between different stimuli
(e.g., the P3 component to different apples and pears might
vary depending on how prototypical a given item is for the
respective category). When random effects are estimated for both
individuals and items, that is referred to as crossed random effects
(Baayen et al., 2008). Finally, random effects can be specified for
experimental effects—as random slopes, both by-subject or by-
item. These estimate to which degree experimental effects vary
between individuals or items (e.g., R.F. might show a stronger
effect of an uncertainty manipulation compared to the group
mean while M.M. might show a smaller effect). Accounting
for these additional sources of variance provides more reliable
group-level estimates (Barr et al., 2013; Matuschek et al., 2017),
but these variations might as well be exploited to investigate
how individual differences in experimental effects relate to each
other (random effect correlations; Kliegl et al., 2010). With these
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features, LMMs are a powerful tool to overcome the limitations
of traditional averaging approaches in ERP research (see above):

First, LMMs—performed on single trials—take all data into
account and are robust to unequal numbers of observations
per cell and even missing values (Pinheiro and Bates, 2000).
They are therefore suitable for unbalanced designs, e.g., where
participants’ behavior determines the number of observations
(Fröber et al., 2017). Second, random slopes provide a means
to estimate random variance in effect sizes while computing the
fixed group effect, yielding more robust estimates and avoiding
Type I errors (Barr et al., 2013; Matuschek et al., 2017). Third, in
contrast to the many observations of limited discrete sampling
points of the independent variable required by the averaging
approach, regression based approaches with fewer observations
of discrete values across a larger value range have larger power
and allow for the test of nonlinear relationships (Cohen, 1983;
MacCallum et al., 2002; Baayen, 2004). To illustrate, when
investigating the effect of reward on feedback related potentials,
in order to obtain reliable ERPs for each type of reward one
would need at least 30 trials of each reward magnitude. On the
other hand, in a regression-based approach, on the same overall
number of trials, reward could be varied continuously from a
given low to a given high reward, and linear, but also quadratic or
cubic effects of reward across that range could be tested (Frömer
et al., 2016a).

To summarize, single-trial regression-based approaches are
equivalent to the averaging approach with regard to estimating
ERPs (Smith and Kutas, 2015a). Further, LMMs as an extension
of standard regressions help account for some of the problems
posed for the application of ANOVAs, such as unequal
observations per cell (Pinheiro and Bates, 2000), variability in
effect sizes across individuals (Barr et al., 2013; Matuschek et al.,
2017) and items (Baayen et al., 2008), as well as unbalanced
designs (Fröber et al., 2017). We will next explore some examples
where the advantages of LMMs (as an instance of the regression
based approach) were successfully exploited to investigate ERPs.

LMMs were first applied to EEG data in 2011 (Amsel, 2011;
Dimigen et al., 2011), their application to psychophysiological
data was proposed long before that (Bagiella et al., 2000). In
the psycholinguistic domain, LMMs are widely used, following
the maxim that “words are people, too” (R. Kliegl, personal
communication) in the sense that, just like people, they
vary in a myriad of characteristics. Amsel (2011) investigated
the effects of a variety of such characteristics, e.g., semantic
richness and imageability on ERPs related to word processing,
while controlling for variables well known to affect word
processing, such as word length and word frequency and
crossed random effects. Dimigen et al. (2011) used LMMs
to control for word and sentence characteristics and crossed
random effects in sentence reading with simultaneous EEG
and eye tracking, showing effects of gaze duration, word
predictability and frequency on N400 amplitude. Since, LMMs
have been applied in active reading, to ERPs (Kornrumpf
et al., 2016) and in the time-frequency domain (Kornrumpf
et al., 2017), in the motor learning domain (Frömer et al.,
2016a,b) and in the area of cognitive control (Fröber et al.,
2017).

These are just a few selected examples meant to illustrate the
potentials of this approach. They are certainly not the only studies
applying LMMs, and other regression based approaches have
been applied and for example been combinedwith computational
modeling (e.g., Cavanagh et al., 2012; Fischer and Ullsperger,
2013; Collins and Frank, 2016).

THE “WHAT” TO THE “HOW”:
DETERMINING TIME WINDOWS AND
REGIONS OF INTEREST

Choosing a statistical approach is only one decision researchers
have to make. Another, and perhaps more difficult decision is
what data to apply this approach to. EEG data are incredibly
rich. In the present dataset, we have 65 channels and 1s of
time series at each of those, summing up to 26,000 data points
to be potentially analyzed (the 200ms baseline excluded). This
number is not unusual for EEG experiments. Thus, determining
the right time-windows and regions of interest (ROIs) to test
group-level effects is a challenge. Even with clear hypotheses
on which ERP components will be affected by the experimental
manipulations, the selection is not trivial, because latencies
and topographical distributions can vary to a certain degree
across studies. The problem is amplified when new effects
are explored and there is no substantial previous literature to
help develop direct hypotheses on the nature of those effects
(e.g., time course or spatial distribution). Especially in face
of the replication crisis, fishing expeditions that might yield
some, but in the worst-case spurious effects, should be avoided
(for a detailed discussion, see Luck and Gaspelin, 2017). One
statistically robust way to determine suitable time windows and
electrode sites are cluster-based permutation tests (CBPT) as
implemented in FieldTrip (Maris and Oostenveld, 2007). In a
nutshell, this approach tests the null hypothesis that observations
for different conditions are drawn from the same distribution and
are therefore exchangeable. Therefore, if observing similar effects
under random assignment of condition labels is highly unlikely
(less than 5% of the permutations show them), this hypothesis
is rejected and the observed condition effect is considered
significant (Maris, 2004, 2012). The cluster-based procedure
further makes use of the EEG property that observations on
adjacent sites and time points are often correlated, because
a real effect most likely affects multiple electrodes similarly
and persists across several tens to hundreds of milliseconds
(or sampling points). While in other approaches this violates
assumptions of statistical independence, here this property is
exploited to identify spatio-temporal clusters. Samples with
positive and negative t-values (retrieved from simple t-tests at
each sensor-sample pair) exceeding a threshold (e.g., p < 0.05
according to parametric test) are clustered separately. The added
t-values of sampling points within each cluster form the cluster-
level statistics. The largest (absolute) value from that cluster
level statistic is then compared to the permutation distribution
of maximal cluster statistics. That permutation distribution is
created by randomly assigning condition labels and running the
same test many times (e.g., 1,000 times), retrieving the maximum
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cluster statistics every time. If the maximum cluster statistic
from the real data is larger than 95% of the maximum cluster
statistics in the permutation distribution, then the null hypothesis
that the two conditions are sampled from the same distribution
is rejected. To temporally and spatially locate the effect, all
(absolute) cluster level statistics larger then the 95th percentile
(for α = 0.05) of the permutation distribution are then taken
to be significant under the assumption that no cluster statistic
exceeds this critical value. The major advantage of this approach
is that it does not require knowledge or assumptions about the
underlying unknown distributions and that it reduces a large
quantity of comparisons down to one statistical test, reducing
Type I error probability while maintaining sensitivity. A detailed
description of the procedure and mathematical demonstration of
its correctness are provided in Maris and Oostenveld (2007).

THE PRESENT STUDY

The goal of the present study is to facilitate the application of
regression-based methods on single-trial ERP data by providing
example code covering the whole process from data cleaning to
statistical analysis with LMMs. Thus, we present an application
of a processing pipeline integrating (1) EEG-data processing
with EEGlab (Delorme and Makeig, 2004) for data cleaning,
structuring and plotting, (2) applying cluster-based permutation-
tests as implemented in FieldTrip (Maris and Oostenveld, 2007)
for data screening and ROI selection, and (3) single-trial based
LMM analyses using the lme4 package for R (Bates et al., 2015b).
An overview of the processing pipeline is shown in Figure 1.

The data were obtained using a visual search task, in which
participants indicated the location of a deviant object in a circular
array of newly learned objects (left or right). Search arrays
were either presented intact or blurred, manipulating perceptual
certainty. Besides typical analyses of manipulation effects on
ERPs, here we link single-trial estimates of behavior and neural
correlates of decision-making—particularly N2 and P3b —to
demonstrate how the presented pipeline can also be employed to
investigate brain-behavior relationships. All data and scripts can
be downloaded from https://osf.io/hdxvb/.

METHODS

Participants
The final sample comprised 40 participants (8 male) with a
mean age of 23.82 years (SD = 5.07). Participants gave informed
consent and received course credits for their participation.

Apparatus and Stimuli
Stimuli were presented on a 4/3 17′′ BenQ monitor with a
resolution of 1280 x 1024 using Presentation (Neurobehavioral
Systems, Berkeley, USA) at a viewing distance of 60 cm. Stimuli
consisted of eight rare, unfamiliar objects presented on a light
blue square producing an equal stimulus size of 2.7◦ visual angle
for each object stimulus. Each stimulus array contained 12 objects
(all either intact or blurred) arranged in a circle (diameter = 12◦

visual angle). For blurred stimuli, a Gaussian filter (sigma = 10)

was applied to the original stimuli. Manual responses and RTs
were registered using custom-made response buttons.

Procedure and Design
Participants performed a visual search task while EEG was
recorded. After a short practice block participants performed
1920 trials of the visual search task, organized in 5 blocks
separated by self-paced breaks. Each trial started with the
presentation of a fixation cross at the center of the screen,
followed by the search display after 1 s. The search display
consisted of 11 identical objects and one deviant, and was
presented for 200ms, followed by a fixation cross. Participants
indicated whether the deviant object was on the left or right
side of the display by pressing a button with their corresponding
hand’s index finger (Figure 2). Within a search display all stimuli
were visually similar (either light or dark stimulus group), and
presented either intact or blurred. Trials ended with the response
or after a time out of 2 s after search array onset. Prior to the test
session, participants had acquired knowledge about the objects
(Maier et al., 2014), which will not be investigated here.

Electrophysiological Recording and
Analyses
EEG data were recorded using brain vision recorder (Brain
Products) from 64 Ag/AgCl electrodes mounted in standard
electrode caps (Easycap) with a sampling rate of 500Hz, and
referenced against A1. The vertical EOG was recorded below the
left eye (IO1).

EEG data analysis was conducted using Matlab (R2016a,
MathWorks Inc.) and the EEGlab toolbox (Version 13_6_5b;
Delorme and Makeig, 2004). EEG data were re-referenced
to average reference and A1 activity was retrieved. Ocular
artifacts were corrected with surrogate data based on individual
eye movements recorded separately and obtained using Brain
Electric Source Analysis (BESA 6.0) software (Ille et al.,
2002). The corrected data were filtered (0.5Hz low cut off
and 40Hz high cutoff). These steps were performed using
F01_preprocessing.m. Cleaned data were segmented from −200
to 800ms relative to stimulus onset and baselines were corrected
to the prestimulus interval. Segments containing artifacts, hence
values ±150 µV or gradients larger than 50 µV were invalidated
and thereby excluded from further analysis. All trials of all
participants were combined in a 3D matrix (channels, time
points, trials by participants), which forms the basis for all further
ERP analyses (F02_epoching_structuring.m).

Analyses
Behavioral data processing and statistical analyses other than
CBPT were conducted using R-Studio (Version 3.1.1; R Core
Team, 2014). Trials in which the deviant was on the center-top
or center-bottom positions and therefore hard to assign to either
the left or right visual field, and miss trials were excluded from
all analyses. Accuracy was analyzed with generalized linear
mixed models (GLMMs), fitting a binomial model (Bolker,
2008). For the linear mixed models (LMM) analyses of reaction
times (RTs) and ERPs, we further excluded trials with incorrect
responses. LMMs and GLMMs were computed with the lme4
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FIGURE 1 | Flow chart of the different parts of the processing pipeline. Script names are reduced to their numbers for simplicity.

package (Bates et al., 2015b) and p-values with the lmerTest
package, using Satterthwaite approximation for degrees of
freedom. RTs were modeled using perceptual certainty (intact
vs. blurr) and deviant position (right vs. left visual field) as fixed
effects. As random effects we modeled random intercepts for
participants (variance in individual means across all conditions,
e.g., variance in average response time or ERP magnitude) and
object pairs (variance in means across stimuli, e.g., variance
in average response times across stimuli), as well as random
slopes for the predictors (estimates the variance in the effect
of a given manipulation across individuals or items). Random
effects not supported by the data, that is explaining zero variance
according to singular value decomposition were excluded to
prevent overparameterization (Bates et al., 2015a). For all
predictors we applied sliding difference contrasts, thus the
resulting estimates can be interpreted as the difference between
subsequent factor levels (level 2 minus level 1, e.g., intact
minus blurred). The advantage of this contrast is that the fixed
effect intercept (group-level mean) is estimated as the grand
average across all conditions (e.g., the empirical group-level
mean), rather than the mean of a baseline condition, as for
example for the default treatment contrast, which can cause

troubles when using multiple predictors. Single trial information
for CBPT and plotting was exported to Matlab in the same
analysis script, F00_behavioral_data_and_LMM_analyses.R.
CBPT were performed using FieldTrip (Version 20170701) in
F04_permutation tests.m based on aggregated data obtained
with F03_prep_permutation_tests.m. Relevant time windows
of the single trial EEG data, as determined using CBPT were
then exported for single trial LMM analyses using F05_export.m
(see section electrophysiology in results for specific time
windows and regions of interest). ERP data were plotted using
F06_plotting.m. Fixed effects structures of LMMs and GLMMs
were reduced stepwise by excluding non-significant interaction
terms/predictors and compared using anova ratio tests until
the respectively smaller model explained the data significantly
worse than the larger model (significant X2-test). We further
compared and report AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion), fit indices that are smaller
for better fitting models. Compared to AIC, BIC implements a
stronger penalty for model complexity (number of parameters).
Significant interactions would be followed up by running models
with factors constituting the interaction within each other
to obtain estimates for the comparison within each level of
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FIGURE 2 | Trial schematic. After a 1 s fixation cross, a circular visual search array of 12 objects was shown. Participants indicated whether the deviant object was on

the left or the right side. Trials with the deviant in the top or bottom row were not analyzed.

the respective other factor. Note that for this procedure to be
accurate, these models need to be specified identically to the
original model except for the nesting. For comparison, we also
provide code to obtain these with the difflsmeans function from
the lmerTest package.

RESULTS

Behavior
Hit rates and reaction times are displayed in Figure 3. Reduced
perceptual certainty impaired performance, decreasing hit rates
and increasing reaction times. Hit rates were further higher in the
right compared to the left visual field. In both hit rates and RTs
we observed significant perceptual certainty by deviant position
interactions. Model estimates are summarized in Table 2.

The upper part of the table displays the fixed effects for the
GLMM (left, accuracy) and LMM (right, RTs). GLMM estimates
are log-ratios and LMM estimates can be read out directly in
milliseconds. Note that in these analyses we only use categorical
predictors with two factor levels each applying sliding difference
contrasts, thus the estimates refer to the differences in means
(or changes in log-ratios in response types for GLMMs) between
factor levels (or conditions). The bottom part of the table
summarizes the random effects, providing standard deviations
as estimates of the variance in each component (Participant
and Item are random intercepts, respectively and indented
components below are the corresponding random slopes for
perceptual uncertainty and deviant position), and goodness of
fit estimates log likelihood and restricted maximum likelihood

(REML) deviance. We report these metrics in line with the
documentation in Kliegl et al. (2013).

We followed up the significant interaction by running
additional models with the two factors nested within each other
to obtain the effects of one factor at each level of the other
factor, respectively. For accuracy, themodel with deviant position
nested within perceptual certainty revealed a significant deviant
position effect for blurred (b = 0.41, p < 0.001), but not intact
stimuli (b= 0.22, p= 0.085). Nesting perceptual certainty within
deviant position, we obtained significant effects for both, left (b=
1.05, p < 0.001) and right (b= 0.86, p < 0.001) deviant position.
In RTs, there was no significant deviant position effect for either
blurred (b = −6.57, p = 0.067) or intact stimuli (b = −2.86,
p = 0.418). When nesting perceptual certainty within deviant
position, perceptual certainty effects were significant for the left
(b = −35.80, p < 0.001) and right (b = −32.08, p = 0.001)
deviant position.

For comparison, we ran standard repeated measures ANOVA
and regression on the RT data (cf. F00 for detailed outputs
of those analyses). The ANOVA showed only a main effect
of perceptual certainty, while the regression showed significant
main effects for both perceptual certainty and deviant position.
We compared AICs and BICs of regression and LMM to
assess relative fit to the data and the LMM had smaller, hence
more favorable fit indices than the regression (AIC: 565152
vs. 578335, BIC: 565249 vs. 578379). To see what drives the
difference between LMMs and regression, we ran two additional
LMMs: one omitting the random effect for items and one with
random intercepts per participant only, omitting random slopes.
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FIGURE 3 | Hit rates and reaction times by deviant position and perceptual certainty. Error bars depict 95% confidence intervals (CI).

TABLE 2 | Effects of perceptual certainty on performance contingent on deviant position.

Variable Accuracy Reaction time

b SE z-value p-value b SE t-value p-value

Intercept 3.31 0.19 17.45 <0.001 *** 469.85 9.93 47.34 <0.001 ***

PC i - b 0.96 0.14 6.92 <0.001 *** −33.94 5.98 −5.68 <0.001 ***

DP r - l 0.32 0.11 2.76 0.006 ** −4.72 3.42 −1.38 0.174

PC: DP −0.19 0.09 −2.17 0.030 * 3.71 1.65 2.26 0.024 *

Variance components SD Goodness of fit SD Goodness of fit

Participants 0.89 Log likelihood -9963 53.01 Log likelihood −281084

PC 0.35 REML deviance 19926 14.30 REML deviance 562168

DP 0.52 16.61

Stimulus 0.49 21.20

PC 0.45 21.89

DP 0.22 8.10

Residual 89.57

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left). ***p < 0.001, **p < 0.01, *p < 0.05.

Both models still showed significant interactions of perceptual
certainty and deviant position. The main effect of deviant
position emerged as a trend in themodel without crossed random
effects and became significant when omitting random slopes. The
standard error of that effect dropped from 3.42 in the original
model to 2.69 in the model without crossed random effects to
0.86 in the model with random intercept for participants only,
which is how the small effect yielded significance. Thus, the LMM
was more sensitive than the ANOVA and more specific than the
ordinary regression.

For accuracy, ANOVA is not the appropriate test, so we only
ran a logistic regression in comparison. The logistic regression
on accuracy yielded the same results as the LMM with regard

to significant effects, however, similar to the RT models, the
regression underestimated the standard errors. Further, AIC
and BIC for the GLMM were smaller than those for the
logistic regression (AIC: 19958 vs. 21938, BIC: 20100 vs. 21974),
indicating that the GLMM fits the data better. Again, we stepwise
omitted random effects in the GLMM and standard errors of the
estimates approached those in the logistic regression (and so did
AIC and BIC).

Electrophysiology
CBPTs comparing mean amplitudes over the epoch 0–800ms
revealed that the blurred and intact stimulus conditions differed
significantly. As shown in Figure 4, differences started around
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FIGURE 4 | Results of the CBPT on the main effect of perceptual certainty (blurr–intact). Electrodes that are part of clusters with p-values < 0.05 are highlighted in the

corresponding time windows.

100ms after stimulus onset and remained throughout the
whole epoch. Three clusters underlay the significant difference:
From 116ms on, the blurred condition evoked more positive
amplitudes at central, parietal and frontocentral electrode sites
(p = 0.002). Furthermore, two clusters with lower amplitudes
in the blurred compared to the intact condition were observed,
between 124 and 594ms at parietal and occipital electrodes (p =
0.002) and between 640 and 800ms at frontal and frontocentral
electrodes (p = 0.008). Here we limit the follow-up analyses to
the fronto-central N2 between 250 and 350ms (FC1, FC2, C1, Cz,
C2), as well as the centro-parietal P3b/CPP (CP3, CP1, CPz, CP2,
CP4, P3, Pz, P4, PO3, POz, PO4) between 400 and 550ms. The
fronto-central N2 typically peaks between 200 and 300ms and
is thought to reflect fast signaling of task relevant information
and is modulated by conflict, task engagement and surprise
(Ullsperger et al., 2014). The centro-parietal P3b is proposed to
reflect evidence accumulation with regard to response selection
(Twomey et al., 2015) and peaks around the time of the response
in perceptual decision-making tasks (Ullsperger et al., 2014).

N2 Amplitude

To test the effects of our experimental manipulation on
N2 amplitude, we regressed perceptual certainty, deviant
position and their interaction on N2. The model estimates are
summarized in Table 3 and can be read out directly as mean
differences in µV for main effects. Note that the N2 is a negative
component; so negative estimates correspond to an increase in
amplitude and positive estimates to a decrease in amplitude.

Figure 5 shows the topographies separately for blurred and
intact stimuli in the left and right visual field, as well as the
difference between blurred and intact stimuli in the left and right
visual field, respectively. The time course at Cz is visualized in
Figure 6.

We observed a significant main effect of perceptual certainty,
with a reduced N2 for blurred compared to intact stimuli.
Further, N2 amplitude was significantly reduced for the right
compared to the left deviant position. Finally, we observed a
significant interaction between perceptual certainty and deviant
position.
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TABLE 3 | Effects of perceptual certainty and deviant position on N2 amplitude.

Variable b SE t-value p-value

Intercept −3.42 0.32 −10.69 <0.001 ***

PC i - b −0.87 0.12 −7.57 <0.001 ***

DP r - l 0.31 0.08 3.71 <0.001 ***

PC: DP 0.24 0.09 2.60 0.009 **

Variance

components

SD Goodness of fit

Participants 1.91 Log likelihood −131736

PC 0.48 REML deviance 263471

DP 0.44

Stimulus 0.41

PC 0.30

Residual 4.81

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).
***p < 0.001, **p < 0.01.

To follow up this interaction, we computed models with the
factors nested within each other. Those revealed a significant
effect of perceptual certainty for the right (b = −0.77, p <

0.001), and the left deviant position (b = −1.01, p < 0.001).
The descriptively larger effect estimate for the left target position,
consistent with behavioral findings, suggests that the effect of
perceptual certainty was stronger when the deviant was presented
in the left visual field than when it was presented in the right
visual field. Testing deviant position effects nested within blurred
and intact stimuli, we observed a significant deviant position
effect for intact (b= 0.43, p< 0.001), but only a trend for blurred
stimuli (b = 0.19, p = 0.051). Note that these comparisons can
alternatively be obtained using the difflsmeans function of the
lmerTest package.

We ran ANOVA and regression for comparison. The results
are comparable across methods (see F00 for detailed outputs).
Comparing AICs and BICs, again suggests a better fit of the LMM
compared to the regression (AIC: 263499 vs. 270239, BIC: 263621
vs. 270282).

P3b

We next tested the effects of our experimental manipulations,
perceptual certainty and deviant position, on P3b amplitude. The
model revealed a significant main effect of perceptual certainty,
that is P3b amplitude was reduced for blurred compared to
intact stimuli. Topographies for blurred and intact stimuli, as
well as the difference are displayed in Figure 7 and the time
course is visualized in Figure 8. There was no significant main
effect of or interaction with deviant position. We therefore
reduced the model step-wise, first excluding the non-significant
interaction and then excluding deviant position altogether.
Model comparison favored the reduced model with perceptual
certainty only, 1X2

(2)
= 0.79, p = 0.673 (1AIC = −3, 1BIC

= −20). However, note that we maintained random slopes
for deviant position for participants, as removing this variance
component significantly decreased model fit. This indicates that

FIGURE 5 | Topographies in the N2 time range (250–350ms) for intact and

blurred stimuli in the left and right visual field, as well as respective difference

topographies. ROI electrodes are highlighted.

while there is no group level effect of deviant position, there are
reliable individual differences in this effect, which might reflect
differences in the use of top-down information for decision-
making. The reduced model including fixed and random effects
estimates is summarized in Table 4.

Comparing the results of ANOVA, regression and LMM, all
methods converged to the same results. However, comparing fit
indices, LMMs again suggested to better account for the data
than ordinary regression (AIC: 257536 vs. 275627, BIC: 257641
vs. 275654).

Brain Behavior Relationship

So far, we established that showing blurred vs. intact objects in
visual search affects performance, N2, and P3b. Furthermore,
N2 and behavior are jointly affected by deviant position in
interaction with perceptual certainty. Next, we tested whether
behavior varies as a function of N2 and P3b amplitudes.

We tested the joint effects of N2 and P3b on accuracy and
RTs, regressing their centered amplitudes, perceptual certainty,
and deviant position on accuracy and RTs. For these analyses,
we divided all single trial amplitudes by 10, as lme4 suggested
rescaling of the variables to support model identifiability. Thus,
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FIGURE 6 | ERP images and average ERPs at electrode Cz. (Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are

sorted according to RTs, marked as a black line. (Center) Average ERPs by perceptual certainty and visual field.

FIGURE 7 | Topographies in the P3b time window (400–550ms) for intact and blurred stimuli, as well as the difference topography. ROI electrodes are marked as dots.

FIGURE 8 | ERP images and average ERPs at electrode Pz. (Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are

sorted according to RTs, marked as a black line. (Center) Average ERPs by perceptual certainty.

the estimates from these analyses relate to amplitude changes
of 10 µV. For accuracy, the full model including all predictors
and their interactions revealed no significant 3-way interactions
or 4-way interaction, also, there were no significant interactions
of perceptual certainty with deviant position or N2. Exclusion of
these interaction terms did not significantly decrease model fit,
1X2

(7)
= 2.60, p = 0.920, and fit indices were smaller for the

reduced model (1AIC = −11, 1BIC = −73). Model estimates
are summarized in Table 5.

There was no main effect of N2 on accuracy, but a significant
interaction of N2 and deviant position. To follow up on this
effect, we computed a nested model to obtain estimates of N2
effects separately for left and right deviant positions. While
for the left deviant position, larger N2 amplitudes significantly
related to higher detection likelihood (b=−0.13, p= 0.022), for
the right deviant position, there was no significant association—
if anything, smaller N2 tended to predict higher detection
likelihood (b = 0.11, p = 0.086). Accuracy further increased
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with increasing P3b amplitude. Nested models to follow up the
significant interactions of P3b with perceptual certainty and
deviant position, respectively, showed significant P3b effects
for intact (b = 0.82, p < 0.001) and blurred stimuli (b =

0. 57, p < 0.001), as well as deviants in the left (b = 0.80,
p < 0.001) and right visual field (b = 0.59, p < 0.001). The
overall effect of P3b amplitude on accuracy and the interaction
with perceptual certainty are consistent with previous findings

TABLE 4 | Effects of perceptual certainty and deviant position on P3b amplitude.

Variable b SE t-value p-value

Intercept 4.20 0.51 8.27 <0.001 ***

PC i - b 1.17 0.17 6.67 <0.001 ***

Variance

components

SD Goodness of fit

Participants 3.17 Log likelihood −128756

PC 0.53 REML deviance 257513

DP 0.46

Stimulus 0.59

PC 0.59

Residual 4.49

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).
***p < 0.001.

proposing a scaling of P3b amplitude with choice confidence
(Boldt and Yeung, 2015) and the interpretation of P3b as
reflecting evidence accumulation (Ullsperger et al., 2014;Murphy
et al., 2015; Twomey et al., 2015). We further observed a
significant interaction of N2 and P3b, that is, accuracy increased
more strongly with P3b when N2 was smaller. The logistic
regression we ran in comparison obtained similar results overall
with the exception that it did not show a significant interaction
of P3b and perceptual certainty. Again, fit indices were smaller
for the GLMM compared to the logistic regression (AIC: 17454
vs. 19143, BIC: 17638 vs. 19222). We ran additional GLMMs,
sequentially omitting random effects per item and random
slopes, to see what produces the difference between the two
methods. The estimate decreased when omitting the crossed
random structure and was no longer significant in the model
with random intercept per participants only. Thus this effect
was revealed when controlling for variance in effects across
participants.

In the full model on RTs we observed no significant 2-way
or higher order interactions between perceptual certainty and
N2, so we excluded those, which did not significantly reduce
model fit, 1X2

(6)
= 7.13, p = 0.309, and fit indices were smaller

for the reduced model (1AIC = −5, 1BIC = −57). RTs
significantly decreased with increasing N2 amplitude. This effect
was significant for deviants in the left (b = 16.73, p < 0.001),
and the right visual field (b = 9.36, p < 0.001), as revealed with
nested models to follow up the interaction of N2 with deviant
position. The partial effects of this interaction on RTs, as retrieved

TABLE 5 | Joint effects of N2 and P3b amplitude, perceptual certainty and deviant position on performance.

Accuracy Reaction time

Variable b SE z-value p-value b SE t-value p-value

Intercept 3.35 0.19 17.5 <0.001 *** 470.00 9.23 50.92 <0.001 ***

PC i - b 0.94 0.13 6.93 <0.001 *** −30.14 5.43 −5.55 <0.001 ***

DP r - l 0.30 0.11 2.81 <0.001 *** −6.15 3.59 −1.71 0.093

N2 −0.01 0.04 −0.31 0.758 13.04 2.26 5.77 <0.001 ***

P3 0.69 0.05 13.82 <0.001 *** −32.23 0.94 −34.30 <0.001 ***

PC:P3 0.25 0.09 2.69 0.007 ** 6.78 1.78 3.81 <0.001 ***

DP:P3 −0.21 0.09 −2.37 0.018 * 1.38 1.80 0.76 0.444

N2:P3 0.18 0.07 2.46 0.014 * −8.23 1.48 −5.54 <0.001 ***

DP:N2 0.24 0.08 2.86 0.004 ** −7.37 1.74 −4.24 <0.001 ***

DP:N2:P3 – – – – 6.72 2.62 2.57 0.010 *

Variance components SD Goodness of fit SD Goodness of fit

Participants 0.92 Log likelihood −8706 49.92 Log likelihood −256820

PC 0.40 REML deviance 17413 14.62 REML deviance 513641

DP 0.42 18.63

N2 – 13.02

Stimulus 0.47 19.04

PC 0.40 19.33

DP 0.24 7.46

Residual 86.60

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left). ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 9 | Relationship between N2 amplitude and reaction time for left and

right deviant position. Predicted partial effects were computed with the remef

package in R, the regression line is retrieved from a local linear model fit to the

data points for illustration.

using remef (Hohenstein and Kliegl, 2014), are displayed in
Figure 9.

Moreover, we observed significantly shorter RTs for larger P3b
amplitudes. This effect was significant for blurred (b = −35.62,
p< 0.001) and intact stimuli (b=−28.84, p< 0.001), as obtained
with a nested model to follow up the interaction. This effect is
visualized in Figure 10.

In addition to these effects we observed significant
interactions of N2 and P3b, as well as a significant 3-way
interaction with deviant position. The N2 by P3b interaction
suggests a stronger RT decrease with P3b amplitude increase
when N2 amplitude is smaller (less negative). This interaction
was significant for left (b = −11.59, p < 0.001) and right
deviants (b = −4.86, p = 0.015), as revealed by a nested model.
These effects, visualized in Figure 11, suggest complementary
mechanisms underlying successful performance reflected in N2
and P3b. While both support faster performance, N2 amplitude
seems to relate more tightly to the extraction of perceptual
information, while P3b appears to relate more to the use or
integration of given information for decision-making.

A regression ran as comparison obtained significant effects
for all terms except for the 3-way interaction, in contrast to the
LMM, the deviant position effect and the deviant position by
P3b Interaction were significant. Moreover, fit indices favored
LMM over regression (AIC: 513694 vs. 527163, BIC: 513929 vs.
527258). Again, to follow up the differences between regression
and LMM results, we reduced the random structure of the LMM.
When omitting crossed random effects, the deviant position

FIGURE 10 | Relationship between centered P3b amplitude and RTs for

blurred and intact stimuli. Predicted partial effects were computed with the

remef package in R, the regression line is retrieved from a local linear model fit

to the data points for illustration.

effect became significant, as in the regression. Further omitting
random slopes per participant rendered the 3-way interaction to
a non-significant trend. However, even in the random intercept
only model, we did not obtain a significant deviant position by
P3b interaction, suggesting that this effect in the regression is
produced by random intercept variance (note that even in the
regression the estimate is only 3.49, which is very small even
though it’s twice the size of the LMM estimate).

To summarize, using single trial based LMM analyses, we
obtained mostly comparable results to ANOVA and regression.
When results differed, LMMs were more sensitive than ANOVAs
and both more sensitive and more specific than regressions.
The brain behavior analyses were further only applicable with
single trial ERPs and hence LMMs and regression. Here, using
continuous predictors, as for categorical predictors in the other
analyses, LMMs outperformed ordinary regression.

DISCUSSION

The present study illustrates the advantages of single trial based
analyses of EEG and behavioral data. As we could show, the
ERP components meaningfully and differentially relate to trial-
by-trial variations in behavior beyond variability caused by
our experimental manipulations. This would not have been
revealed using a traditional averaging approach. Therefore, while
the present analyses are of exploratory nature, they highlight
the flexibility of single-trial-based approaches in general and
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FIGURE 11 | Interaction effects on RT. (Left) Interaction of P3b and N2 amplitude on RT. (Right) Interaction of P3b and N2 amplitude on RT by deviant position. In

both panels, P3b amplitude is color-coded. Note that ERPs are centered and amplitudes are divided by ten. Random effects and the fixed effect of perceptual

certainty were removed using remef.

demonstrate the applicability of our processing pipeline in
particular.

(When) Should You Use This Approach?
Whywould you use complicated single-trial based LMM analyses
of ERP data in simple orthogonal designs? As outlined in the
introduction, ERP data often lack equal observations per cell,
and individual differences in effect sizes, potentially biasing group
estimates, are overlooked in averaging approaches. Further, as is
well established in psycholinguistics, different stimuli can vary in
characteristics unrelated to the experimental manipulations that
might confound the effects of interest. As outlined by Baayen
et al. (2008), this is not only true for words, but all naturalistic
stimuli randomly drawn from a large population, such as objects,
faces, artifacts or scenes. Thus, LMMs with crossed random
effects would benefit every study using naturalistic stimuli.

While so far this pipeline has only been used for the analyses
of distinct time windows (Frömer et al., 2016a,b; Fröber et al.,
2017), the resulting data structure also allows for multiple robust
regression on multiple time points to analyze the time course of
effects (Hauk et al., 2006, 2009; Fischer and Ullsperger, 2013).
However, bear in mind that only LMMs simultaneously account
for random effects and might as well be conducted at multiple
time points and electrodes. However then, robust estimates
of Type I error need to be assessed. Statistical significance
for LMMs can also be estimated using Markov chain Monte
Carlo (MCMC) sampling, which would be more appropriate for
multiple comparisons (Baayen et al., 2008).

Experimenters are encouraged to use parts of this pipeline
according to their needs and personal taste. For instance, while
we prefer procedures other than ICA for ocular correction and

objective thresholds over investigator-dependent subjective data
cleaning procedures (that might sometimes be more accurate
and sometimes less), others might want to use a different
preprocessing routine and only use some of the other parts of
the pipeline. The modular way the pipeline is set up allows for
flexibly swapping components for other approaches.

Limitations
While the present approach circumvents some of the problems of
traditional averaging approaches, it is still subject to others, such
as component overlap. Specifically, and a problem of all methods
applying statistical tests of multiple variables on local ERP
distributions (e.g., mean amplitude at a ROI or peak amplitudes),
the statistically observed effects are not necessarily distributed
the way the ERP component of interest is. Statistically reliable
effects might as well stem from a spatially overlapping different
ERP component (C. B. Holroyd, 2015, personal communication).
For LMM analyses, a simple proof of principle is to run the
final model on all electrodes and to plot the topography of the
fixed effects estimates to visually examine whether they show the
expected distribution.More sophisticated approaches, in the time
domain on a single electrode rather than in the spatial domain at
a given time window, have been described by Smith and Kutas
(2015b).

While the cluster based permutation approach is not subject
to this limitation, its present implementation is only applicable
to categorical variables with few factor levels. For screening and
determining relevant time windows and recording sites, this
problem could be circumvented by constructing median splits
for parametric variables of interest and testing the main effects
based on those categorical factors. However, as discussed in
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the introduction, this approach reduces statistical power and
assumes linear scaling of the effects under investigation, which
experimenters should bear in mind (Cohen, 1983; MacCallum
et al., 2002; Baayen, 2004). Further, CBPT as implemented here
operates on participant averages and therefore holds the same
problems as other approaches aggregating within subjects and
conditions first. Therefore, results from CBPT might differ from
those obtained using LMMs with a better control of additional
sources of variance. Last but not least, the CBPT is rather
conservative in some cases, such as small, local effects (Luck and
Gaspelin, 2017). However, it can be a valuable tool to objectively
narrow down the amount of data to submit to further analyses
and thereby decrease investigator degrees of freedom and the risk
of Type I errors. An extension of this approach to single-trial
based regression (possibly LMM) analyses would be a valuable
methodological contribution to robust effect estimation and
future research.

CONCLUSION

The present processing pipeline integrates open source toolboxes
for EEG data processing, EEGLAB (Delorme and Makeig, 2004)
and FieldTrip (Oostenveld et al., 2011), and statistical analyses,
lme4 (Bates et al., 2015b). It uses a single-trial regression based
approach, circumventing limitations of traditional averaging
approaches, while trying to maintain objectivity with regard
to what data the analyses are applied to and thereby reducing
investigator degrees of freedom. While some limitations remain,
we consider this approach a major improvement compared to
traditional ERP approaches and a good starting point for the
development of even better analysis tools.
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