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Abstract 

The N400 component of the event-related brain potential is 
widely used in research on language and semantic memory, 
but the cognitive functions underlying N400 amplitudes are 
still unclear and actively debated. Recent simulations with a 
neural network model of word meaning suggest that N400 
amplitudes might reflect implicit semantic prediction error. 
Here, we extend these simulations to sentence 
comprehension, using a neural network model of sentence 
processing to simulate a number of N400 effects obtained in 
empirical research. In the model, sequentially incoming words 
update a representation capturing probabilities of elements of 
sentence meaning, not only reflecting the constituents 
presented so far, but also the model’s best guess at all features 
of the sentence meaning based on the statistical regularities in 
the model’s environment internalized in its connection 
weights. Simulating influences of semantic congruity, cloze 
probability, a word’s position in the sentence, reversal 
anomalies, semantic and associative priming, categorically 
related incongruities, lexical frequency, repetition, and 
interactions between repetition and semantic congruity, we 
found that the update of the predictive representation of 
sentence meaning consistently patterned with N400 
amplitudes. These results are in line with the idea that N400 
amplitudes reflect semantic surprise, defined as the change in 
the probability distribution over semantic features in an 
integrated representation of meaning occasioned by the arrival 
of each successive constituent of a sentence. 

Keywords: neural network model; sentence comprehension; 
language; event-related potentials; N400; semantic surprise 

Introduction 
Language and meaning processing have been investigated 
with event-related brain potentials (ERPs), providing 
continuous time-resolved measures of electrical brain 
activity, and with models that characterize the processing of 
language and meaning, either in terms of the principles that 
govern these processes or the processes that implement 
them. Integration of these approaches could constrain 
selection among alternative models of the computations and 
the processes that implement them, while also providing for 
a possible integrated explanation of the diverse set of 
empirical phenomena that have been discovered through 
ERP research. In this spirit, the current work builds on other 
work described below, aiming to contribute to a better 
understanding of the computational principles and 
functional processes underlying the N400 ERP component, 
an electrophysiological indicator of meaning processing (see 
Kutas & Federmeier, 2011, for review). 

The N400 is a negative deflection at centro-parietal 
electrode sites peaking around 400 ms after the presentation 
of a meaningful stimulus. N400 amplitudes have been 
shown to be modulated by a wide variety of variables. For 
example, the N400 is modulated by contextual fit, with 
larger amplitudes to incongruent as compared to congruent 
sentence continuations, such as when the sentence “He 
spread the warm bread with…” is completed by the word 
“socks” instead of “butter”. The N400 also shows larger 
amplitudes to congruent continuations with lower as 
compared to higher cloze probability; decreasing amplitudes 
over the course of a sentence; smaller amplitudes for targets 
after semantically or associatively related as compared to 
unrelated primes; smaller amplitudes for repeated words as 
compared to a first presentation; and smaller amplitudes for 
words of high as compared to low lexical frequency.  

Despite the large body of data on N400 amplitude 
modulations and widespread agreement that the N400 is 
related to semantic processing, the computational principles 
and processing mechanisms underlying N400 amplitude 
generation are as yet unclear. Various verbally-formulated 
theories are currently under active debate proposing, e.g., 
that N400 amplitudes reflect lexical and/or semantic access, 
semantic integration/ unification, semantic binding, or 
semantic inhibition (reviewed by Kutas & Federmeier, 
2011). The development of an explicit computational 
account that addresses this diverse range of phenomena 
would thus appear to be a worthwhile goal. 

There are at least two ways in which one could seek to 
better understand the N400 component by means of 
computational modeling. First, one might try to implement a 
neurobiologically realistic model of the brain processes 
underlying the N400 component, an approach that makes it 
possible to also model the morphology of the ERP 
waveform (Laszlo & Plaut, 2012; Laszlo & Armstrong, 
2014). Another approach is to directly relate variations in 
N400 amplitudes to measures obtained from functional-
level models of cognitive processes. While this approach 
may entail losing some possibly interesting information 
with respect to neural realization, it allows the modeling 
process to focus on the goal of better understanding the 
cognitive functions underlying N400 amplitudes. Many 
neural network models are of this functional type, in that the 
model is viewed as conforming to a computational principle 
characterized at the functional level. The principle is often 
articulated in terms of the goal to maximize consistency 
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with information in the environment which can then be 
formalized in terms of the more specific goal of minimizing 
prediction error (Hinton, 1987; Rumelhart et al., 1995).  
Focusing on this functional level, Rabovsky & McRae 
(2014) used an attractor network model of word meaning to 
investigate which measure in the model covaries with N400 
amplitudes over a series of typical N400 word processing 
paradigms. They consistently observed a close 
correspondence between N400 amplitudes and network 
error at the semantic layer of representation, and took this 
correspondence to suggest that N400 amplitudes reflect 
implicit semantic prediction error. Here we extend this 
approach to the processing of words in sentences.  

What kind of model would be most appropriate to 
simulate N400 amplitudes in sentences? Simple recurrent 
network models (SRNs; Elman, 1990) are typically trained 
to predict the next word in sentences based on the preceding 
context so that network error in these models reflects an 
implicit prediction error which could correlate with N400 
amplitudes. Indeed, such a correlation was recently reported 
by Frank et al. (2015) who used four information measures 
derived from three probabilistic language models as 
predictors for six ERP deflections (including the N400). 
However, the prediction error in SRNs trained to predict the 
next input based on the preceding context is not specific to 
semantics but rather reflects word surprisal (the negative 
log of the probability of a word in a specific context) and is 
affected by both syntactic and semantic expectation 
violations (Levy, 2008). As the N400 is a functionally 
specific indicator of meaning processing (Kutas & 
Federmeier, 2011) while syntactic violations typically 
modulate different ERP components, we therefore decided 
against using such an SRN, and instead simulated N400 
amplitudes using a model that is specifically trained to 
understand and predict sentence meaning, the Sentence 
Gestalt (SG) model (McClelland et al., 1989).  

The SG model minimizes the mismatch between its 
estimates of the probability of semantic features of events 
given the words presented so far in a sentence and the 
observed probabilities of these features in the meanings of 
sentences, such that, once it has learned, its estimates after 
each new word encountered as a sentence unfolds should 
come close to matching the true probabilities. Thus the 
model can be characterized as an implicit probabilistic 
model of sentence comprehension: The model’s outputs can 
be seen as representing conditional probability distributions 
over possible semantic features of the events described by 
the sentence up to and including the latest word.  
Furthermore, the magnitude of the update of the hidden unit 
state produced by the presentation of the latest word can be 
characterized as reflecting the change in this probability 
distribution produced by the word. We use a measure of this 
update we call semantic surprise, based on a measure that 
has been called Bayesian surprise (Itti & Baldi, 2005). 
Formally, the semantic surprise (SemS) produced by the nth 
word in a sentence is defined as the difference between the 
probability distribution over semantic feature 

representations consistent with the sentence through the nth 
word and the distribution consistent with the sentence 
through the preceding word, as measured by the Kullbach-
Leibler divergence: 

 
𝑆𝑒𝑚𝑆! = 𝑝(𝑟|𝑛)

!

log! 𝑝(𝑟|𝑛) 𝑝(𝑟|𝑛 − 1)  

Here r indexes alternative possible patterns of semantic 
features of the event being described by the sentence and 
p(r|n) and p(r|n-1) denotes the probability of that pattern 
given the sentence up through word n and n-1 respectively. 

The change in activation at the hidden (SG) layer of the 
model reflects this semantic surprise, and, as shown in a 
series of simulations of empirical N400 effects described 
below, models the N400, suggesting that the N400 is itself a 
measure of semantic surprise.  

The Sentence Gestalt model 
The SG model does not assume that sentences are 
represented in a specific propositional format. Instead, it is 
based on the idea that the task of sentence processing 
consists in processing sequences of incoming words to build 
representations enabling correct responses to various probes, 
and the model is allowed to find the best way to build these 
representations in order to meet the imposed demands 
through adjustments of connections between simple 
processing units organized in layers. A detailed description 
of the model is provided elsewhere (McClelland et al., 
1989); we briefly sketch it here. For the current simulations, 
the model was re-implemented in the PDPTool software, V3 
(http://web.stanford.edu/group/pdplab/pdphandbookV3/). 

 
Architecture. The model can be conceptualized as 
consisting of two parts (see Fig. 1). The first part 
sequentially processes each incoming word (presented at the 
input layer) to update activation in the SG layer which 
represents the model’s best guess interpretation of the 
meaning of the sentence as a whole, using the previous 
activation of the SG layer together with the activation 
induced by the new incoming word to produce the updated 
SG layer activation. The second part of the model is used 
primarily for performance assessment and training, 
decoding the content from the SG layer by probing it 
concerning the event described by the sentence.  

 
Environment and training. It is important to note that the 
statistical regularities underlying the model’s best guess 
interpretation of the meaning of the sentence at a given 
point in its presentation are determined by the training set so 
that the effects on semantic surprise depend on the training 
set as well. There are two different approaches to training 
which are complementary in that they each have strengths 
and weaknesses. First, models can be trained on large-scale 
training corpora approximating real life language 
environments of human participants. While this approach 
allows for simulation of empirical experiments with the 
exact same stimuli on a single-trial basis, the factors 
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responsible for the effects produced by the model may 
remain somewhat opaque. A second possible approach is to 
train models on a synthetic training set which implements 
variation among certain dimensions considered to be 
relevant for the target empirical phenomenon (the N400, in 
our case) and/or the theory advanced to explain the 
empirical phenomenon (semantic surprise, in our case). 
While this approach is limited in its capacity to fully explain 
specific empirical data points, it is more transparent 
concerning the general factors and principles responsible for 
the effects produced by the model. Because the main aim of 
the current study is to advance a theory concerning the 
functional basis of N400 amplitudes by highlighting the 
common core shared by the different dimensions that have 
been shown to modulate them, this transparency concerning 
the responsible factors is of primary importance to our 
goals. Thus, we trained our model on a small synthetic 
training set, aiming to create statistical regularities in the 
training set that allowed us to run simulation experiments 
containing manipulations corresponding to manipulations in 
empirical N400 experiments. We observe, based on these 
simulation experiments, that variables or dimensions that 
influence N400 amplitudes in the world influence semantic 
surprise in our model in the same way, suggesting that N400 
amplitudes reflect semantic surprise. 
 

 
 

Fig. 1: The Sentence Gestalt (SG) model.  
  

The model environment consists of sentences (presented 
word by word at the input layer) such as ‘At breakfast, the 
man eats eggs’ each paired with a corresponding event (a set 
of role-filler pairs, e.g., agent – the man), probabilistically 
generated online during training according to pre-specified 
constraints. After each presented word (represented by a 
word-specific unit at the input layer), the model is probed 
concerning the event described by the sentence. Responding 
to a probe consists in completing a role-filler pair when 
probed with either a thematic role (i.e., agent, action, 
patient, location, or situation; each represented by an 
individual unit at the probe and output layer) or a filler of a 
thematic role (e.g., the man, to eat, the eggs, etc.). For the 
filler concepts, we used feature-based semantic 
representations that were handcrafted so that members of 
the same semantic category shared some semantic features. 
For example, somewhat similar to the representations used 
by Rogers and McClelland (2008), all living things shared a 
semantic feature (‘can grow’), all animals shared an 
additional semantic feature (‘can move’), all birds shared 

one more semantic feature (‘can fly’) and then the canary 
had two individuating features (‘can sing’ and an item-
unique individuating feature) so that the robin and the 
canary shared three of their five semantic features while the 
salmon and the canary shared two features, the rose and the 
canary shared only one feature, and the jeans and the canary 
did not share any features. While the labels for the features 
are irrelevant for model behavior, the aim in constructing 
the representations was to create graded similarities between 
concepts roughly corresponding to real world similarities. A 
comparison between a similarity matrix of the concepts 
based on the hand-crafted semantic representations and 
representations based on semantic word vectors derived 
from co-occurrences in large text corpora (Pennington, 
Socher, & Manning, 2014) suggested a reasonable 
correspondence (r = .73). Such feature-based semantic 
representations were also employed in the original version 
of the model; this allows us to capture the influence of 
semantic similarity over and above the influence of co-
occurrence in language as implemented via the presented 
sentences (enabling simulation of categorically related 
semantic incongruities; Sim. 1).  

After each presented word, the model is probed for each 
thematic role and each filler of each role-filler pair involved 
in the described event, and the model’s activation at the 
output layer is compared with the correct output. Error is 
then back-propagated through the entire network and 
connections are adjusted to minimize the difference between 
model-generated and correct output (we used cross-entropy 
error, a learning rate of 0.00005 and momentum of 0.9). 
Because the model is probed concerning the described event 
after every single presented word, it anticipates the meaning 
of each sentence as early as possible, so that the activation 
at the SG layer (and accordingly at the output layer in 
response to the presented probes) becomes tuned to the 
regularities in the corpus. For example, the model learns that 
a sentence beginning “The woman writes…” more often 
describes the woman writing an email than an sms, and 
encodes this regularity in the connection weights, resulting 
in probabilistic pre-activations of units in the SG layer 
before email or sms appear in the sentence. Indeed the 
model’s connection weights capture the base-rate 
probabilities of the semantic features of each of the roles in 
the sentence, so that when probed with a role prior to the 
presentation of the first word of a sentence the pattern over 
the filler units corresponds approximately to the overall 
probability across the entire environment that the feature 
will be present in the filler of the probed-for role.   

Since the minimum of the cross-entropy error is reached 
when the network’s estimates of feature probabilities match 
the actual probabilities of those features, the change in the 
network’s estimates occasioned by each successive word 
should match the change in these actual probabilities 
(Rumelhart et al., 1995). Treating the semantic feature 
probabilities as conditionally independent given the words 
seen so far, this change in estimates of feature probabilities 
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can be shown to correspond to the SemSn measure defined in 
the introduction.  

Thus far we have described how changes in the activation 
of semantic features in the model’s output layer should 
correspond to the semantic surprise.  However, we do not 
assume that these semantic feature activations are actually 
computed during sentence processing.  Instead, we propose 
that the pattern of activation over the SG layer (together 
with the connection weights in Part 2 of the model) 
implicitly represent this probability distribution in such a 
way that the update at the SG layer mirrors the update in the 
actual probability distribution over features. We use the 
following cross-entropy measure to characterize this update: 

 

𝑎! 𝑛 log
𝑎! 𝑛

𝑎! 𝑛 − 1
+ 1 − 𝑎! 𝑛 log  

1 − 𝑎! 𝑛
  1 − 𝑎! 𝑛 − 1!

 

  
Here i ranges over all of the SG layer units, ai(n) 

represents the activation of unit i based on the current word 
and ai(n-1) represents the activation of unit i based on the 
previous word. Similar results are obtained using the sum 
over SG units of the absolute value of the difference 
between ai(n) and ai(n-1). 

Simulations 
Sim. 1: Categorically related semantic incongruities.  
Federmeier and Kutas (1999) presented sentence pairs such 
as “They wanted to make the hotel look more like a tropical 
resort. So along the driveway they planted rows of…” and 
observed gradually increasing N400 amplitudes from 
congruent sentence continuations (“palms”) to unexpected 
continuations which were members of the same semantic 
category as the expected continuation and thus shared 
semantic features (“pines”) to incongruent continuations.  

To simulate these data, we trained the model such that 
one member of each semantic category (i.e., trees, drinks, 
etc.) was never presented in the same sentence context (i.e., 
as a patient of the same action) as the other category 
members so that it was completely unexpected in that 
context. For the simulation experiment, we presented the 
model with 10 such unexpected sentence continuations 
which were categorically related to the congruent 
continuations, as well as 10 congruent continuations, 
presented with a probability of .8 during training when the 
specific combination of agent and action had been 
presented, and 10 incongruent sentence continuations which 
were never presented as patients of the specific action 
during training and did not share any semantic features with 
the congruent continuations.  

As shown in Fig. 2A, semantic surprise induced by the 
critical words gradually increased from congruent 
continuations to unexpected continuations categorically 
related to the congruent continuations, t(9) = 5.23, p < .0001, 
and from those to unexpected continuations unrelated to the 

congruent continuations, t(9) = 6.30, p < .0001, in line with 
N400 amplitudes.  

The model also successfully captures other typical N400 
effects in sentences such as cloze probability effects, with 
larger N400 for low cloze as compared to high cloze 
probability sentence continuations (Sim. 2; Kutas & 
Hillyard, 1984), sentence position effects with decreased 
N400 amplitudes over the course of a sentence (Sim. 3; Van 
Petten & Kutas, 1990), and influences of so-called semantic 
illusions or reversal anomalies, i.e. only a very slight 
increase of N400 amplitudes in sentences such as ‘For 
breakfast, the eggs eat…’ as compared to ‘For breakfast, the 
boys eat…’ while the increase in ‘For breakfast, the boys 
plant…’ is much larger (Sim. 4; Kuperberg et al., 2003; also 
simulated by Brouwer, 2014, PhD thesis, see below). Even 
though the SG model is designed as a model of sentence 
processing, word pairs and isolated words should be 
processed by the same system so that we also used the 
model to simulate N400 effects outside of sentence context. 
We describe the simulation of semantic priming in detail.  
 
Sim. 5: Semantic priming. Bentin et al. (1985) observed 
smaller N400 amplitudes to target words presented after 
semantically related primes (i.e., primes from the same 
semantic category as the targets) as compared to unrelated 
primes. To simulate these data, we presented the model with 
10 word pairs where the referenced concepts were members 
of the same semantic category and thus shared semantic 
features at the output layer (e.g., monopoly – chess) and 10 
word pairs where the primes and targets from the related 
pairs were re-assigned such that there was no semantic 
similarity between prime and target. As shown in Fig. 2B, 
semantic surprise was smaller for targets after semantically 
related as compared to unrelated primes, t(9) = 5.14, p < 
.0001, in line with N400 amplitudes (Bentin et al., 1985). 
The SG model additionally captures several other N400 
effects in word processing such as associative priming, with 
smaller amplitudes to targets after associatively related (e.g., 
play – chess) as compared to unrelated primes (Sim. 6; 
Kutas & Hillyard, 1989), repetition priming, i.e. smaller 
N400 amplitudes to immediately repeated words as 
compared to target words presented after unrelated primes 
(Sim. 7; Nagy & Rugg, 1989), and smaller amplitudes to 
words of high as compared to low lexical frequency (Sim. 8; 
Van Petten & Kutas, 1990), captured through the encoding 
of base rate probabilities of features in the model’s 
connection weights. 

Finally, probability distributions can change and 
anticipatory preparedness to likely upcoming features 
depends on constant adaptation of represented probabilities 
based on new experiences. In neural network models, this 
adaptation is driven by the difference between expected and 
observed outcomes. Thus, if N400 amplitudes reflect this 
difference then larger N400 amplitudes should entail 
enhanced adaptation. Simulation 9 focuses on this relation. 

2048



 
Fig. 2: Influences of (A) categorically related semantic incongruities, (B) semantic priming, and (C) repetition X congruity. 

 
Sim. 9: Semantic incongruity and repetition. The 
influence of semantic incongruity on N400 amplitudes is 
reduced by repetition due to a stronger repetition-induced 
reduction of amplitudes for incongruent continuations 
(Besson et al., 1992). Repetition effects have been simulated 
as consequences of connection adjustments induced by the 
prior presentations of the item within the experiment. We 
thus presented the 10 congruent and 10 incongruent 
sentences from Sim. 1 twice while learning was operative 
(learning rate = 0.0005) so that the first presentation served 
not only as an experimental condition but also produced 
connection adjustments.  

As shown in Fig. 2C, the difference in semantic surprise 
between the critical congruent vs. incongruent words was 
smaller during repetition. A rmANOVA confirmed a 
significant interaction between repetition and congruity, 
F(1,9) = 87.18, p < .0001, reflecting a stronger influence of 
repetition for incongruent, F(1,9) = 82.35, p < .0001, ηp² = 
.90, as compared to congruent, F(1,9) = 16.47, p = .003, ηp² 
= .65, sentence continuations, in line with N400 data. 

These results nicely illustrate the intrinsic relationship 
between semantic surprise and adaptation. However, there is 
a subtle issue with this simulation, namely that the output 
layer which drives learning represents the events described 
by the sentences such that the simulation assumes these 
events to be observed while processing the sentences. This 
is not true for the empirical experiment. Thus, in a 
prospective version of this simulation the error signal that 
drives learning should be derived from the difference 
between SG activation before and after the critical words.  

 
Discussion 

The goal of the present study was to investigate the 
functional basis of the N400 ERP component by relating 
N400 amplitudes to a computational model of sentence 
comprehension, the Sentence Gestalt (SG) model. Across a 
series of simulations of N400 effects, we consistently 
observed a correspondence between N400 amplitudes and 
semantic surprise as represented by the magnitude of the 
update of hidden unit activations that implicitly represent 
probability distributions over semantic features.  

N400 amplitudes have been previously linked to changes 
in lexical activation (Brouwer, 2014, PhD thesis; see also 
Rabovsky & McRae, 2014, for discussion, and Crocker et 
al., 2010, for a model of the P600 component). Brouwer 
(2014) focused on reversal anomalies and took the very 

small increase of N400 amplitudes in sentences such as ‘For 
breakfast, the eggs eat…’ (Kuperberg et al., 2003) to 
indicate that the N400 component does not reflect semantic 
integration but the retrieval of lexical information. He 
further suggests that semantic integration is linked to the 
P600 component (which is increased in reversal anomalies). 
Our account differs from Brouwer’s in that it specifies a 
single integrated representation of meaning which is 
updated whenever a word is presented, with the extent of 
this update reflected in N400 amplitudes. When the word is 
presented in a sentence, the update is seen as an update of an 
integrated representation of the meaning of the sentence. 
The integration process is relatively heuristic and may not 
accord with syntactic constraints in constructions such as 
reversal anomalies. Indeed, analysis of our model’s output 
layer suggests that it experiences a ‘semantic illusion’ in 
that it continues to assign the eggs to the patient instead of 
the agent role even after the word ‘eat’, in line with the 
suggestion that language processing can be shallow 
(Ferreira et al., 2002). Our model does not address the P600. 
It is possible that the P600 effect in reversal anomalies 
reflects a re-assignment of the eggs to an agent role. 
Alternatively, the comprehender may continue to see the 
eggs as being eaten, with the P600 reflecting detection of a 
syntax error. As a third possibility, the P600 may reflect 
conflict monitoring triggered by competing interpretations, 
one arising from a heuristic process and the other arising 
from a controlled process (van Herten et al., 2006). Further 
research seems required to better understand the P600.  

As noted above, the SG representation together with the 
model’s weights latently predict the semantic features of 
each role filler in the sentence based on prior constituents, 
and the update of the SG due to the next constituent adjusts 
these latent predictions.  Latent prediction in that sense 
means that the SG model (and presumably the brain) 
becomes tuned through experience to be prepared to 
respond to likely upcoming semantic features with little 
additional effort. This kind of latent prediction seems to 
range from the pre-activation of specific semantic features 
in sentence context (e.g., for the categorically related 
incongruities, where less semantic update is necessary when 
an unexpected sentence continuation shares semantic 
features with an expected continuation; Sim. 1) to the latent 
structure in connection strengths and default activation that 
leads to less semantic update when processing a high 
frequent as compared to a low frequent word in isolation 
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(Sim. 8). This characterization should make clear that 
prediction in that sense does not refer to explicit intentional 
prediction of specific items but rather to a general 
configuration of the system optimized for upcoming 
semantic information. This entails that semantic activation 
changes induced by new incoming input primarily reflect 
the discrepancy between probabilistically anticipated and 
encountered features, i.e. semantic surprise, in accordance 
with predictive coding (Friston, 2005). In line with this 
view, N400 amplitudes in many paradigms appear to have 
one thing in common, namely that they seem to be a 
function of the fit between the semantic features that are 
implicitly expected based on previously experienced 
regularities and those activated by the current stimulus.  

In sum, the present study aimed to contribute to a better 
understanding of the functional basis of the N400 ERP 
component by relating N400 amplitudes to an implemented 
model of sentence comprehension. Across a series of 
simulations of N400 effects, we consistently observed a 
correspondence between N400 amplitudes and the update of 
conditional probability distributions over semantic features. 
Besides demonstrating that the SG model naturally captures 
electrophysiological indicators of internal cognitive 
dynamics during language comprehension, these results are 
in line with the idea that N400 amplitudes reflect semantic 
surprise as the extent of change induced by an incoming 
stimulus in a probabilistic representation of meaning.  
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